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Systems Neuroscience
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* How the nervous system
performs computations

» How groups of neurons work together to
achieve intelligence

* Requirement for the Integrative Neuroscience
major
* Elective in Computer and Information Science

Objectives

To understand information processing in
biological neural systems from computational
and anatomical perspectives

* Understand the function of key components
of the nervous system

* Understand how neurons interact with one
another

* Understand how to use computational tools to
examine neural data

Recommended student background

Prerequisite:

* Officially: CISC 2500 Information and Data
Management

or CISC 1800/1810 Intro to Programming

Computer
Math . '
science
Some calculus Some programming
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Textbook(s)

Fundamentals of Computational
Neuroscience, Second Edition,
by Trappenberg

* Suggested

* We will focus on the ideas and study
a relatively small set of equations

Computational Cognitive Neuroscience,
by O’Reilly et al.
* Optional, alternate perspective

Website

http://storm.cis.fordham.edu/leeds/cisc3250/

Go online for
— Announcements
— Lecture slides
— Course materials/handouts
— Assignments

Requirements

* Attendance and participation

— 1 unexcused absence allowed

— Ask and answer questions in class
* Homework: Roughly 5 across the semester
* Exams

— 2 midterms, in February and April

— 1 final, in May

¢ Don’t cheat

— You may discuss course topics with other
students, but you must answer homeworks
yourself (and exams!) yourself

Matlab

Popular tool in scientific computing for:
* Finding patterns in data

* Plotting results

* Running simulations

Student license for $50 on Mathworks site

Available in computers at JMH 330 and
LL 612
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Your instructor

Prof. Daniel Leeds
E-mail: dleeds@fordham.edu

Office hours: Mon 3-4, Thurs 12-1
Office: JMH 332

computer science + psychology -> models of vision

Introducing systems and
computational neuroscience

* How groups of neurons work together to
achieve intelligence

* How the nervous system
performs computations

Levels of organization

Examples Scale
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From a psychological perspective...

What are elements
of cognition?
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Systems neuroscience

Regions of the central nervous system
associated with particular elements of cognition

* Visual object recognition

Visual
Processing

Lateral i
in the View > pa[':;i' View ! e
Cortex "Dorsal Stream" Y
\ V3 >
i

N 2, Temporal Cortex
Middle Temporal. =~ “Posterior Inferior (MsT)
Cortex (MT/V5) Temporal Cortex
Inferior Temporal .., Inferior Temporal Fusiform Gyrus
Ventral po!
Cortex omtral v Cortex’ i

Systems neuroscience

Regions of the central nervous system
associated with particular elements of cognition

* Visual object recognition
* Motion planning and execution
* Learning and remembering

Computational neuroscience

Strategy used by the nervous system to solve

problems
O @O &
. . . m ()L
* Visual object perception :
through biological S @-
hierarchical model
“HMAX” A\ ! — T - cOrqﬁjffACelis
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Computational neuroscience as
“theory of the brain”

David Marr’s three levels of analysis (1982):

* Computational theory: What is the
computational goal and the strategy to achieve
it?

* Representation and algorithm: What are the
input and output for the computation, and how
do you mathematically convert input to output?

* Hardware implementation: How do the physical

components perform the computation?
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Marr’s three levels for “HMAX” vision

* Computational theory: Goal is to recognize
objects
* Representation and algorithm:
— Input: Pixels of light and color
— Output: Label of object identity
— Conversion: Through combining local visual
properties
* Hardware implementation:

— Visual properties “computed” by networks of
firing neurons in object recognition pathway

Levels of organization

Examples Scale Examples
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Course outline

* Philosophy of neural modeling

* The neuron — biology and input/output behavior
* Learning in the neuron

* Neural systems and neuroanatomy

* Representations in the brain

* Perception

* Memory/learning Plus: Matlab
* Motor control programming

The neuron
* Building block of all the systems we will study

* Cell with special properties

— Soma (cell body) can have 5-100 um diameter, but
axon can stretch over 10-1000 cm in length

— Receives input from neurons through dendrites

— Sends output to neurons through axon
dendrites nucleus NEURON

/ axon

axon ending

myelin sheath

cell body
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Neuron membrane voltage

* Voltage difference across cell membrane
— Resting potential: ~-65 mV
— Action potential: quick upward spike in voltage

A

IJl

A'ruvmr hont .\,

potential (mV)

time (ms)

] ’
m"/"‘,w‘w"'/ﬁ/“'/\r“",/',/'\,‘_/f/‘\/vf‘l,_ | ..

Example neural signals

The action potential

* Action potential begins at axon hillock and
travels down axon

Voltage-gated
Ca?* channel

* At each axon terminal,  smaptcvescice
spike results in release """,
of neurotransmitters

* Neurotransmitters o,

(NTs) attach to

dendrite of another

neuron, causing voltage change in this second
neuron

Inter-neuron communication

Neuron receives input from 1000s of other neurons

* Excitatory input can increase spiking

* Inhibitory input can decrease spiking

A synapse links neuron A with neuron B

* Neuron A is pre-synaptic:
axon terminal outputs NTs

* Neuron B is post-synaptic: ..t
dendrite takes NTs as input

Postsynaptic
der

More on neuron membrane voltage

* Given no input, membrane stays at resting
potential (~ -65 mV)

Inputs:
* Excitation temporarily increases potential

* Inhibition temporarily decreases potential

Continual drive to remain at rest
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Patch clamp experiment

* Attach electrode to neuron ; ﬁ
\
"

* Raise/drop voltage on electrode 2 e

* Measure nearby voltage (with
another electrode)

5

=

nearby
RN - - )R

Simplification of
neurophysiology
experiment

More on the action potential
1. Accumulated excitation passes certain level
2. Non-linear increase in membrane voltage

+40/

3. Rapid reset

Modeling voltage over time

Equations focusing on change in voltage v
Components:

* Resting state potential (voltage) E,

* Input voltages R/

* Timet
dv(t
T d(t ) = —(v(t) — EL) + RI(t)
change towards incorporate new

resting state input information

Simulation

* Initial voltage
* Time interval for update
* Input at each time

* Apply rule to compute new voltage at each
time
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http://commons.wikimedia.org/wiki/File:Action_potential.svg

Applying dv/dt step-by-step

E,=-65mV v(0ms)=-65mV =1
RI(t)=20mV (from t=0ms to 1000ms)
time step: 10ms dv(t)

Tdt

=—(v(t) — EL) + RI(D)
* v(10ms) = v(Oms) + @ 1000
-65 + [-(-65- -65) +20] x -
-65+20x —— 1000
-64.8
* v(20ms) = v(10ms) +%€ms) 7500
=-64.8 + [-(- 648--65)+20]x

0 1000
=-64.8 + -0. 2+20x—
101000
=-64.8 +19. SXW
=-64.602

00

Applying dv/dt step-by-step

E=-65mV v(Oms)=-65mV 7=1/10
RI(t)=20mV (from t=0ms to 1000ms)
time step: 10ms

dv(t)
T Fr —(w(t) — EL) +RI(Y)
. _ dv(0ms)
v(10ms) = v(Oms) + TR x1000

= -65 + 10x[-(- 65- -65) +20] x

=-65+200 x — 1000

=-63
* v(20ms) = v(10ms) +@ 7500

= -63 + 10x[-(-63- -65) + 20] x ——

1000
=-63 + 10x[-2+20] x ——

-63 + 10x[180] x 1—3’

61.2 1000

Changing model terms

T has inverse effect
* increase T decreases update speed
* decrease T increases update speed

RI(t) has linear effect
* increase RI(t) increases update speed
* decrease RI(t) decreases update speed

Voltage over time: reset
dv(t)

T =—(w(t) —E,) +RI(t)

When voltage passes threshold v,,,., voltage
reset to v,

V(tf) =Vihresh

V(t+6)=v,,,
6 is small positive number close to 0
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A .
Voltage over time
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Below and above threshold

0 100 200 300 400 500 0 100 200 300 400 500

+15mv input +50mv input

E,=-65mV

Newly added:

If input constant for long time RI(t)= k mV
Output v(t) will plateau to E +k if E+k<vech

Accumulating information over inputs

.......

myelin sheath

Positive and negative weighted inputs from
dendrites wa added together:

Rl(t) = Z W](Z] (t)
J

jis index over dendrites; first-pass model

Accumulating inputs

200 400 600 800 1000

D1 w,=1
+207
o J w,=1
D2
10
0 I
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A Accumulating inputs

-9C

0 200 400 600 800 1000
D1 w,=1
+207
o J w,=-3
D2
10
0 I

Accumulating inputs
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Chemical level: NT receptors

Pre-synaptic: a

* Amount of NT released Snabtiveechlo

Post-synaptic: w Neurolransiter

* Number of receptors in
dendrite membrane

* Efficiency of receptors gec'éﬁgfmier *

+W or —w R

* Reflect excitation or inhibition

* One NT type per synapse

* Fixed sign per NT

Voltage-gated
Ca?* channel

Form of dendrite input
dv(t)

a
|

= —(w(t) — EL) + RI(t)

| Pre-synaptic neuron spikes

| Neurotransmitter (NT) released |

NT received by post-synaptic
dendrite at time ¢/

v
Post-synaptic voltage rises and
then fades, aft)

J

tf te
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Jj

50

55 New pre-synaptic
inputs at

-60 * 34ms
* 68ms
* 100 ms

65 e 135ms

-70

0 20 40 60 80 100 120 140 160

“Leaky integrate-and-fire” neuron

* Sum inputs from
dendrites (“integral”)

J

* Decrease voltage
. dv(t)
towards resting state ¢ T —(v(t) — EL) + RI(Y)
(Illeakll)

* Reset after passing

v(tf +6) = v,
threshold (“fire”) ( )= Vres

Activation function
Often non-linear relation between dendrite input

and axon output Tdv(t) — _(o(t) — E}) + g(RI(®)

dt
RI(t) = ijaj(t) Sum inputs
J
g(RI(®)) Apply (non-linear?)

transformation to input

Activation function

Function type Graphice:] Mathematical formula MATLAB implementation
represent.
Linear / g x)=x 0
Ste| ()= J1 x>0 floor (0.5* (1+sign(x)))
P ER 0 elsewhere
Threshold- / gt (x) = x @(x) x.*floor (0.5* (1+sign(x)))
linear

Sigmoid I g%e(x) = Trexps) 1./ (l+exp(-x))

Radial-basis 2855 (x) = exp(-x?) exp (-X.°2)
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An example sigmoid

g(2)=0.9 E,_:___________I__/_ _____
| A
0.8 4 I /
/
0.7 -
g(1)= 0.5 06 :{_"’
0.4 /|
g(0)=0.1 o /i
D:l’ _________ /’_L______
b
g(-4)= 0 6 5 4 -2 2 1 0 1 2 3 4 5 6
h

Tuning curves

Some single neurons fire in response to
“perceiving” a quality in the world

Stretch receptor on frog muscle Tuning curve of V1 neuron in cat

60
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00 ‘ 2 3 0JlO -20 . 0 . 20 40
Weight [g] Orientation [degree]
Adrian, Henry et al.,
J Physiol 1926. J Neurophys
1974.

Variations in activation functions

* Activation function has fixed shape
— Sigmoid is S shape, Radial is Bell shape

* By default, transition between 0 and 1

* Some details of shape may vary -,

— Smallest and lowest value

— Location of transition between valuées

Neuron index

Neural coding

Perception, action, and other cognitive states

represented by firing of neurons

* Coding by rate: high rate of pre-synaptic
spiking causes post-synaptic spiking

* Coding by spike timing: multiple pre-synaptic
neurons spiking together causes post-synaptic
spiking

time

1/24/2019
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Time coding at t=290ms
0 o 00 0

>
100 200 300 400ms

Rate coding: 3.5 -5.5s

0 s 2s 3s 4 5s 6s 7s 8s

Spike time coding, 3-6s

Inhibition can be informative

Inputs of interest can produce
* Below-normal spike rate
* Decreased synchrony among neurons

TR

Lo e e Coding through rate inhibition,
roughly in 2-3s interval

W | IR IR I

i 1 (I IR

LT T S T TR TR R TR O N

(NIRRT B [ R RN Rate and tlme COdIng
I | R I L are deviations from

Os 1s 2s 3s 4s 5s 6s baseline

Take note of baseline.
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Computing spike rate

* Add spikes over a period of time

v(t) =

num spikes in AT

AT

* Average spikes over a set of neurons

1 num spikes in N neurons

AW = a7

N
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