CISC 4090 Theory of Computation

Professor Daniel Leeds dleeds@fordham.edu JMH 332

Theory of computation

Computability:

What computations can be performed by machine X?

Complexity:

How long does it take to complete computation Y?

NP completeness

Machines studied
Finite state automaton

Push-down automaton

Turing machine

Computational analyses using proofs!

Requirements

- Attendance and participation
- Lectures
- Homeworks roughly 5 across semester
- Quizzes each 15 minutes, 4 across semester
- Exams 1 midterm, 1 final
- Academic integrity may discuss course material with your classmates, but you MUST come up with all your graded answers yourself

This is a challenging course!

Read and re-read course materials

- Text and lecture notes
- Practice problems

- In class
- In office hours JMH 332
- Of fellow students (without plagiarizing!)

Start assignments early

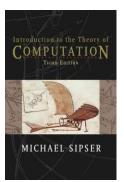
- Homeworks may take 3-10 hours
- Start homework, take break, come back

Course textbook

Introduction to Theory of Computation

Third Edition

Michael Sipser



Course website

http://storm.cis.fordham.edu/leeds/cisc4090

Go online for

- Announcements
- Lecture slides
- Course materials/handouts
- Assignments

Instructor

Prof. Daniel Leeds dleeds@fordham.edu

Office hours: Usually Mon 3-4pm, Thurs 1-2pm

Office: JMH 332

В

Mathematical background

Review of CISC 1400/2100

- Sets
- Logic
- Functions
- Graphs
- Proofs

10

Sets

• A set is an un-ordered group of objects

e.g.: {apple, banana} or {{A,B},{1,2,3,4}, {+,-,*}}

- Key concepts/operations:
 - Subsets: $A \subset B$, $A \subseteq B$
 - Cardinality: |A|
 - Intersection $A \cap B$, Union $A \cup B$, Complement A'
 - · Venn Diagrams
 - Power set: P(A)

If |A|=4, what is |P(A)|?

Ordered-pairs, or *k*-tuples

• Ordered group of objects:

- Cartesian product: AxB -> yields set of tuples
- Given j sets $A_1, A_2, ... A_i$, $A_1 \times A_2 \times ... \times A_i = \{(a_1, a_2, \cdots, a_i) | a_i \in A_i\}$
- \mathbb{Z}^2 represents $\mathbb{Z} \times \mathbb{Z}$ which is $\{(a,b)|a \in \mathbb{Z} \text{ and } b \in \mathbb{Z}\}$

2

Logic

Operations

• AND $T \wedge T \equiv T$, all else is F

• OR $F \lor F \equiv F$, all else T

• NOT $T' \equiv \neg T \equiv F$

• IMPLIES $T \rightarrow F \equiv F$, all else T

3

Functions

A function maps inputs to a single output

• f(a)=b func:

func: Domain -> Co-domain

Examples: Assume N -> N

• $g(x) = x^2$

• h(y) = y+5

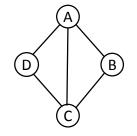
• m(x,y) = x-y

14

Graphs

A graph is a set of vertices and edges

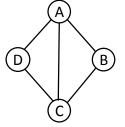
- G=(V,E)
- V={A, B, C, D}
- E={(A,B), (A,C), (C,D), (A,D), (B,C)}



15

Graph terminology

- *Degree* of vertex: number of touching edges
- *Path*: sequence of nodes connected by edges
- Simple path: path with no repeat nodes
- Cycle: Path starting and ending in same node



16

Proofs

A proof is a clear logical argument

Types of proof

- Counterexample
- Contradiction
- Induction
- Construction main technique we'll use this semester

18

Example 1

Claim: All positive integers are divisible by 3

Proof by counterexample:

- Let x=2
- x is a positive integer
- x is **not** divisible by 3

We have disproved our claim!

0

Example 2

Claim: There are no positive integer solutions to the equation $x^2-y^2=1$

Example 2

Claim: There are no positive integer solutions to the equation $x^2-y^2=1$

Proof by contradiction:

- Assume there IS an integer solution
- $x^2-y^2 = (x-y)(x+y) = 1$
- Either (a) x-y=1 and x+y=1 OR (b) x-y=-1 and x-y=-1
- (a) x=1, y=0 non-positive! (b) x=-1 and y=0 non-positive!

Example 3

Claim: For $x \ge 1$, $2+2^2+2^3+...+2^x=2^{x+1}-2$

First review what is proof by induction: Base case that is true

Proof by induction

Inductive step: If true for k, prove for k+1

• Base case: x=1 2 = 2¹⁺¹-2 = 4-2 = 2

Ask students for base case

• Assume true for x=k, prove for x=k+1 Ask students for any part of inductive step

• $2^{(k+1)+1}-2 = 2^{k+2}-2 = 2x2^{(k+1)}-2$

$$= 2x(2 + 2+2^2+...+2^k)-2$$

$$= 4 + 2^2 + 2^3 + ... + 2^{k+1} - 2$$

 $= 2 + 2^2 + 2^3 + ... + 2^{k+1}$

Key topic in our class

Example 4

Claim: For every even number n>2, there is a 3-regular graph with n nodes (Theorem 0.22, p21)

Graph is *k-regular* if every node has degree k

Proof by construction:

- Try constructing for n=4, n=6, n=8
- Describe a general pattern
 - Place nodes in a circle, connect each node to its neighbor (now all nodes have 2 degrees), connect each node to farthest node diagonally across (now each node gets 1 additional degree; since even # of nodes, all nodes paired up)

Here, all you need for your proof is a careful instruction how to make such a graph for any n>2

Key topic in our class

Strings and languages

- Alphabet
- String
- Language

Alphabet is non-empty finite set of symbols, e.g.,

- $\Sigma_1 = \{0,1\}$
- $\Sigma_2 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$

String is finite sequence of symbols from selected alphabet, e.g.,

• 0100 is string from Σ_1 and cat is string from Σ_2

Strings and languages

Length of string w, |w| is number of symbols

Empty string ε has length 0

Strings can be concatenated

- wz is the string w concatenated with string z
- string w can be concatenated with itself k time wk

Language is set of strings