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CISC 4090
Theory of Computation

Finite state machines & 
Regular languages

Professor Daniel Leeds

dleeds@fordham.edu

JMH 332

Stereotypical computer

Central processing unit (CPU) 
– performs all the 
instructions

Memory – stores data and 
instructions for CPU

Input – collects information 
from the world

Output – provides 
information to the world

Output

Input

CPU

2

Super-simple computers

Small number of potential inputs

Small number of potential outputs/actions

• Thermostat

• Elevator

• Vending machine

• Automatic door

3

Automatic door

Desired behavior

• Person approaches entryway, door opens

• Person goes through entryway, door stays open

• Person is no longer near entryway, door closes

• Nobody near entryway, door stays closed

Two states: Open, Closed

Two inputs: Front-sensor, Back-sensor

Finite state machine
4
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Graph and table representations

Closed Open

Front, Back, 
Both

Neither

Neither
Front, Back, 

Both

Front Back Neither Both

Closed Open Open Closed Open

Open Open Open Closed Open 5

More finite state machine applications

• Text parsing

• Traffic light

• Pac-Man

• Electronic locks

6

Coding a combination lock

• A finite automaton M1 with 3 states

• Start state q1;    accept state q2 (double circle)

• Example accepted string: 1101

• What are all strings that this model will accept?
String ending with 1 or string ending with 1 followed by even 
number of 0’s 8

q1 q2 q3

0 1
1 0

0,1

Formal definition of Finite State Automaton

Finite state automaton is a 5-tuple 𝑄, Σ, 𝛿, 𝑞0, 𝐹

• Q is a finite set called states

• Σ is a finite set called the alphabet

• 𝛿: 𝑄 × 𝛴 ⟶ 𝑄 is the transition function

• 𝑞0 ∈ 𝑄 is the start state

• 𝐹 ⊆ 𝑄 is the set of accept states

9
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Describe M1 using formal definition

M1 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

• 𝑄 = 𝒒𝟏, 𝒒𝟐, 𝒒𝟑
• Σ = 𝟎, 𝟏

• Start state: 𝒒𝟏
• F = 𝒒𝟐

11

q1 q2 q3

0 11 0

0,1

• 𝛿 = 0 1

q1 q1 q2

q2 q3 q2

q3 q2 q2

Language of M1

If A is set of all strings accepted by M, A is language of M

• L(M)=A

A machine may accept many strings, but only one language

• M accepts a string

• M recognizes a language

Describe L(M1)=A

• A={w|w ends with 1 or w ending with one 1 followed by even 
number of 0s}

13

Describe M2 using formal definition

M2 = 𝑄, 0,1 , 𝛿, 𝑞1, 𝑞2

• 𝑄 = {q1, q2}

• Start state: q1

15

q1 q2

0 11

0

• 𝛿 = 0 1

q1 q1 q2

q2 q1 q2

What is the language of M2?

L(M2)={w| w ends with at least one 1}

17
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What is the language of M4?
(page 38, Ex. 1.11)

L(M4)={w| w ends and begins 
with same letter (either a or b)}

20

s
a

q1

q2

r1

r2

a

b a

a

b

a b

b

b

What is the FSM that has L:
{w | w ends with opposite letter of the
letter it starts with}

21

s
a

q1

q2

r1

r2

a

b a

a

b

a b

b

b

Perform modulo arithmetic

Let Σ={RESET, 0, 1, 2}

Construct M5 to accept a string only if the sum of each input 
symbol is multiple of 3, and RESET sets the sum back to 0 
(1.13, page 39)

23

q2

1 0

1, RES

2
q0 q1

10,RES 0

2,RES

2 𝛿 𝑞𝑗 , 𝑛 = 𝑞 𝑗+𝑛 %3

More modulo arithmetic

Generalize M5 to accept if sum of symbols is a multiple of i
instead of 3

𝑞0, 𝑞1, 𝑞2, 𝑞3,⋯ , 𝑞𝑖−1 , 0,1,2, RESET , 𝛿, 𝑞0, 𝐹

𝛿 𝑞𝑗, 𝑅𝐸𝑆𝐸𝑇 = 𝑞0

𝛿 𝑞𝑗, 0 = 𝑞𝑗

𝛿 𝑞𝑗, 1 = 𝑞𝑘 for k = j+1 mod i

𝛿 𝑞𝑗, 2 = 𝑞𝑘 for k = j+2 mod i 25
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Regular languages

Definition: a language is called a regular language if some 
finite automaton recognizes it

equivalently

All of the strings in a regular language are accepted by some 
finite automaton

27

Designing finite automata (FAs)

• Determine what you need to remember
• How many states needed for your task?

• Set start and finish states

• Assign transitions

• Check your solution
• Should accept 𝑤 ∈ 𝐿
• Should reject 𝑤 ∉ 𝐿

• Be careful about 𝜀!

28

FA design practice!

• FA to accept language where number of 1’s is odd 
(page 43)

• FA to accept string with 001 as substring (page 44)

• FA to accept string with 
substring abab 29

FA design practice!

• FA to accept language where number of 1’s is odd 
(page 43)

• FA to accept string with 001 as substring (page 44)

• FA to accept string with 
substring abab (next page!) 30

Corrected Sep 13, 4:10pm
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FA to accept string with substring abab

31

q𝜀 qa

ab

qab

b

qaba

a a,ba

b

qabab

b

a

Regular operations

Let A and B be languages. We define 3 regular operations:

• Union: A ∪ 𝐵 = 𝑥|𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵

• Concatenation: 𝐴 ⋅ 𝐵 = 𝑥𝑦 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵

• Star: 𝐴∗ = 𝑥1𝑥2⋯𝑥𝑘|𝑘 ≥ 0 and each 𝑥𝑖 ∈ 𝐴
• Repeat a string 0 or more times

34

Examples of regular operations

Let 𝐴 = good, bad and 𝐵 = boy, girl

What is:

•𝐴 ∪ 𝐵 = good, bad, boy, girl

•𝐴 ⋅ 𝐵 = goodboy, goodgirl, badboy, badgirl

•𝐴∗ =
𝜀, good, bad, goodgood, goodbad, badgood, badbad,⋯

36

Closure

A collection of objects is closed under an operation if 
applying that operation to members of the collection 

returns an object in the collection

Regular languages are closed under ∪ , ⋅, ∗

39
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Closure of Union

Theorem 1.25: The class of regular languages is closed under 
the  union operation

Proof by construction

40

Let’s consider two languages

L1: start with 0, end with 1

L2: start with 1, end with 0

Construct machines for each languages

Construct machines M3 to recognize L1 U L2

41

Example union
A = {w | w starts with 0 ends with 1}

M1

B = {w | w starts with 1 ends with 0}
M2

42

q𝜀 q0st

0

q1en

1

0

1

q1st
0, 1

r𝜀 r1st

1

r0en

0

1

0

r0st
0, 1

1

0

0

1

Example union

Simulate M1 and M2 states

43

(q0,r0) (q0st,r0st)

0

(q1en,r0st)

1

0

1

1

(q1st,r1st) (q1st,r0en)

0

1

0

0

1



9/21/2019

8

Closure of Union – Proof by Construction

Let us assume M1 recognizes language L1

• Define M1 as M1 = Q, Σ, δ1, q0, F1

Let us assume M2 recognizes language L2

• Define M2 as M2 = R, Σ, δ2, r0, F2

Proof by construction: Construct M3 to recognize L3 = L1 ∪ L2

• Let M3 be defined as M3 = S, Σ, δ3, s0, F3

44

Closure of Union – Proof by Construction
• Let M3 be defined as M3 = S, Σ, δ3, s0, F3

Use each state of M3 to simulate being in a state of M1 and 
another state in M2 simultaneously

M3 states:  S = qi, rj | qi ∈ Q and rj ∈ R

Start state: s0 = q0, r0

Accept state: F3 = qi, rj | qi ∈ F1 or rj ∈ F2

Transition function: δ3 qi, rj , x = δ3 qi, x , δ3 rj, x 45

Closure of Concatenation

Theorem 1.26: The class of regular languages is closed under 
the concatenation operation

• If A1 and A2 are regular languages, then so is 𝐴1 ⋅ 𝐴2

• Challenge: How do we know when M1 ends and M2 begins?

46

Determinism vs. non-determinism

Determinism: Single transition allowed given current state and 
given input

Non-determinism: 

• multiple transitions allowed for current state and given input

• transition permitted for null input 𝜀

47

q1 q2

0,1

1
q3 q4

0,1
0,𝜀 1
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NFA in action

• When there is a choice, follow all paths – like cloning

• If there is no forward arrow, path terminates and clone dies 
(no accept)

• NFA will “accept” if at least one path terminates at accept

Alternative thought:

• Magically pick best path from the set of options

48

The language of M10

• List some accepted strings

110 – at third entry, we’re in states {q1,q3, and q4}

•What is L(M10)?

{w | w contains 11 or 101} – correction, class answer: 
“contains at least two 1s is insufficient, as 10001 is not 
accepted by M10” 50

q1 q2

0,1

1
q3 q4

0,1
0,𝜀 1

NFA construction practice

Build an NFA that accepts all strings over {0,1} with 1 in 
the third position from the end

52

q1 q2

0,1

1
q3 q4

0,1 0,1

If path is at q4 and you receive more 
input, your path terminates

NFA -> DFA

Build an NFA that accepts all strings over {0,1} with 1 in 
the third position from the end

Can we construct a DFA for this?

53
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Formal definition of 
Nondeterministic Finite Automaton

Similar to DFA: a 5-tuple 𝑄, Σ, 𝛿, 𝑞0, 𝐹

• Q is a finite set called states

• Σ is a finite set called the alphabet

• 𝛿: 𝑄 × Σ𝜀 ⟶ 𝑃(𝑄) is the transition function

• 𝑞0 ∈ 𝑄 is the start state

• 𝐹 ⊆ 𝑄 is the set of accept states

54

Describe M10 using formal definition

M1 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

• 𝑄 ={q0,q1,q2,q3}

• Σ ={0,1}

• Start state: q0

• F = {q3}
56

• 𝛿 =

q0 q1

0,1

1
q2 q3

0,1 0,1

0 1 ε

q0 {q0} {q0,q1} {q0}

q1 {q2} {q2} {q1}

q2 {q3} {q3} {q2}

q3 {} {} {q3}

Consider NFA N1

57

q0 q1

0
0

q2

1

1

Language:
L(N1)={w | w begins with 0, ends with 01, every 1 in w is 

preceded by a 0}

Convert NFA N1 to DFA M1

59

q0 q1

0
0

q2

1

1

{q0,q1}
0

{q0,q2}
1

{q0}

{}

1

0,1

0

1

0

N1

M1

Simulate being in 
multiple states at once
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Equivalence of NFAs and DFAs

NFAs and DFAs recognize the same class of languages

Two machines are equivalent if they recognize the 
same language

Every NFA has an equivalent DFA

61

Equivalence of NFAs and DFAs
NFA   N1 = 𝐐, 𝚺, 𝛅, 𝐪𝟎, 𝐅

Define DFA M1 = 𝐑, 𝚺, 𝛅𝐃, 𝐫𝟎, 𝐅
𝐃

• R=P(Q) --- R = {{}, {q0}, …,{qn},{q1,q2},…{qn-1,qn}, …}

every combination of states in Q

• r0={q0}

• 𝐅𝐃 = 𝐬 ∈ 𝐑 | 𝐬 𝐜𝐨𝐧𝐭𝐚𝐢𝐧𝐬 𝐚𝐭 𝐥𝐞𝐚𝐬𝐭 𝟏 𝐚𝐜𝐜𝐞𝐩𝐭 𝐬𝐭𝐚𝐭𝐞 𝐟𝐨𝐫 𝐍𝟏

• 𝜹𝑫 𝒓𝒊, 𝒙 Consider all states qj in ri , find rk that is union 
of outputs for N1’s 𝛅 𝐪𝐣, 𝐱 for all qj 62

Union Closure with NFAs Theorem 1.45

•Proofs by construction – fewer states!

•Any NFA proof applies to DFA

Given two regular languages A1 and A2 recognized by N1 
and N2 respectively, construct N to recognize A1⋃A2

63

Let’s consider two languages

L1: start with 0, end with 1

L2: start with 1, end with 0

Construct machines for each languages

Construct machines N3 to recognize L1 U L2

64
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Let’s consider two languages

L1: start with 0, end with 1

L2: start with 1, end with 0

65

q0 q1

0
q2

1N1

0, 1

r0 r1

1
r2

0N2

0, 1

N3 recognizes L1 U L2

66

q0 q1

0
q2

1

N1
0, 1

r0 r1

1
r2

0

N2
0, 1

s0

𝛆

𝛆

Closure of regular languages under union

Let N1 = Q, Σ, δ1, q0, F1 recognize L1

Let N2 = R, Σ, δ2, r0, F2 recognize L2

N3 = Q3, Σ, δ3, s0, F3 will recognize L1 U L2 iff

Q3 = Q ∪ R ∪ s0
Start state: s0

F1 = F2 ∪ F3

67

δ3 q, a =  

δ1 q, a if q ∈ Q

δ2 q, a if q ∈ R

q0, r0 if q = s0 and a = ε

Closure under concatenation Theorem 1.47

Given two regular languages A1 and A2 recognized 
by N1 and N2 respectively, construct N to 
recognize A1 ⋅ A2

68
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Concatenation: L1 ⋅ L2

69

q0 q1

0
q2

1

N1
0, 1

r0 r1

1
r2

0

N2
0, 1

𝛆

Closure of regular languages under concatenation

Let N1 = Q, Σ, δ1, q0, F1 recognize L1

Let N2 = R, Σ, δ2, r0, F2 recognize L2

N3 = Q3, Σ, δ3, s0, F3 will recognize L1 ⋅ L2 iff

Q3 = Q ∪ R

Start state: q0

F1 = F3

70

δ3 q, a =  

δ1 q, a if q ∈ Q

δ2 q, a if q ∈ R
r0 if q ∈ F1 and a = ε

Closure under star Theorem 1.49

Prove if A1 is regular, 𝐴1
∗ is also regular

71

Star: L1
∗

72

q0 q1

0
q2

1

N1
0, 1

s0

𝛆

𝛆
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Closure of regular languages under star

Let N1 = Q, Σ, δ1, q0, F1 recognize L1

N3 = Q3, Σ, δ3, s0, F3 will recognize L1* iff

Q3 = Q ∪ s0
Start state: s0

F1 = F3 ∪ s0

73

δ3 q, a =  
δ1 q, a if q ∈ Q
q0 if q = s0 and a = ε
s0 if q ∈ F1 and a = ε

Regular expressions

A regular expression is description of a set of possible 
strings using a single characters and possibly including 
regular operations

Examples:

• 0 ∪ 1 0∗

• 0 ∪ 1 ∗

74

Regular expressions

A regular expression is description of a set of possible 
strings using a single characters and possibly including 
regular operations

Examples:

• 0 ∪ 1 0∗ {0, 1, 00, 10, 000, 100, …}

• 0 ∪ 1 ∗ {0, 1, 00, 10, 01, 11, 000, 001, …}

75

Regular expressions – formal definition

R is a regular expression if R is

• a, for some a in alphabet Σ

• 𝜀

•∅

•R1 ∪ R2, where R1 and R2 are regular expressions

•R1 ⋅ R2, where R1 and R2 are regular expressions

•R1∗, where R1 is a regular expression

This is a recursive definition 76
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Examples of Regular Expressions

•0∗10∗

•Σ∗1Σ∗

•01 ∪ 10

• 0 ∪ 𝜀 1 ∪ 𝜀

77

Examples of Regular Expressions

•0∗10∗={1, 010, 100, 00100, 001, …} = 
{w | w contains exactly one 1}

•Σ∗1Σ∗={1,11,01,011,001,110,111,…} = 
{w | w contains at least one 1}

•01 ∪ 10={01, 10}

• 0 ∪ 𝜀 1 ∪ 𝜀 ={01,0,1,𝜀}

78

FA can recognize any Regular Expression

Theorem: A language is regular if and only if some 
regular expression describes it

• Prove: If a language is described by a regular expression, 
then it is regular

• Prove: If a language is regular, then it is described by a 
regular expression

79

Prove if language described regular 
expression, it is regular (recognized by FSA)

Each regular expression is either

• Case 1: aϵΣ

• Case 2: ε

• Case 3: ∅

• Case 4: R1 ∪ R2 – Theorem 1.45

• Case 5: R1 ⋅ R2 – Theorem 1.47

• Case 6: R1∗ – Proven on slide 50

80

q0 q1

a

q0

q0

Case 1:

Case 2:

Case 3:
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Converting from FSA to Regular Expression

82

1 2
b

a a, b

a*b(a ∪ b)*

Converting from FSA to Regular Expression

83

1 2
a

a

3
b

b

a,b

(b∪aa*b)((a∪b)(b∪aa*b))*


