CISC 4090 Theory of Computation

Finite state machines & Regular languages

Professor Daniel Leeds dleeds@fordham.edu JMH 332

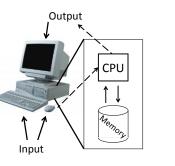
Stereotypical computer

Central processing unit (CPU) – performs all the instructions

Memory – stores data and instructions for CPU

Input – collects information from the world

Output – provides information to the world



Super-simple computers

Small number of potential inputs
Small number of potential outputs/actions

- Thermostat
- Elevator
- Vending machine
- Automatic door

Automatic door

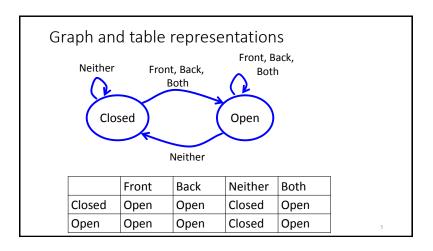
Desired behavior

- Person approaches entryway, door opens
- Person goes through entryway, door stays open
- Person is no longer near entryway, door closes
- · Nobody near entryway, door stays closed

Two states: Open, Closed

Two inputs: Front-sensor, Back-sensor

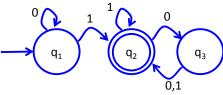
Finite state machine



More finite state machine applications

- Text parsing
- Traffic light
- Pac-Man
- Electronic locks

Coding a combination lock



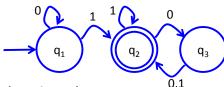
- A finite automaton M1 with 3 states
- Start state q1; accept state q2 (double circle)
- Example accepted string: 1101
- What are all strings that this model will accept?
 String ending with 1 or string ending with 1 followed by even number of 0's

Formal definition of Finite State Automaton

Finite state automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$

- Q is a finite set called states
- ullet Σ is a finite set called the alphabet
- δ : $Q \times \Sigma \longrightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- ullet $F\subseteq Q$ is the set of accept states

Describe M1 using formal definition

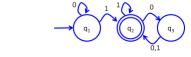


• δ =

 $M1 = (Q, \Sigma, \delta, q_0, F)$

- $\bullet Q = \{q_1, q_2, q_3\}$
- $\Sigma = \{0, 1\}$
- Start state: q₁
- $\bullet F = \{ \boldsymbol{q_2} \}$

Language of M1



If A is set of all strings accepted by M, A is language of M

• L(M)=A

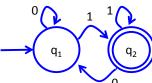
A machine may accept many strings, but only one language

- M accepts a string
- M recognizes a language

Describe L(M1)=A

 A={w|w ends with 1 or w ending with one 1 followed by even number of 0s}

Describe M2 using formal definition



 $M2 = (Q, \{0,1\}, \delta, q_1, \{q_2\})^{0}$

- $Q = \{q_1, q_2\}$
- Start state: q₁

	0	1
q1	q1	q2
q2	q1	q2

0

 q_3

 q_2

 q_3

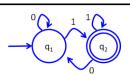
 q_2

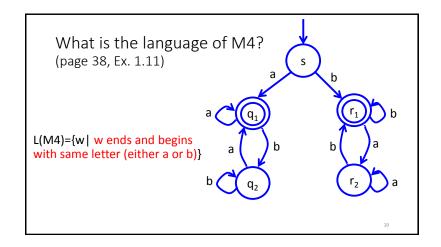
 q_2

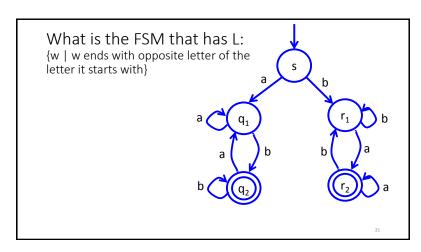
 q_2

15

What is the language of M2?







More modulo arithmetic

Generalize M5 to accept if sum of symbols is a multiple of i instead of 3

$$(\{q0, q1, q2, q3, \dots, q_{i-1}\}, \{0,1,2, RESET\}, \delta, q0, F)$$

$$\delta(qj, RESET) = q0$$

$$\delta(qj,0) = qj$$

$$\delta(qj, 1) = qk$$
 for k = j+1 mod i

$$\delta(qj,2) = qk$$
 for k = j+2 mod i

Regular languages

Definition: a language is called a <u>regular language</u> if some finite automaton recognizes it

equivalently

All of the strings in a regular language are accepted by some finite automaton

7

Designing finite automata (FAs)

- Determine what you need to remember
 - How many states needed for your task?
- Set start and finish states
- Assign transitions
- Check your solution
 - Should accept $w \in L$
 - Should reject $w \notin L$
 - Be careful about ε !

28

FA design practice!

- FA to accept language where number of 1's is odd (page 43)
- FA to accept string with 001 as substring (page 44)
- FA to accept string with substring abab

20

FA design practice!

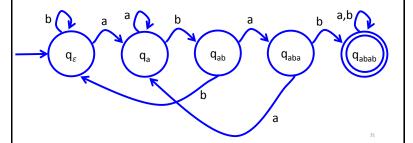
• FA to accept language where number of 1's is odd (page 43)

• FA to accept string with 001 as substring (page 44)

 FA to accept string with substring abab (next page!)

Corrected Sep 13, 4:10pm

FA to accept string with substring abab



Regular operations

Let A and B be languages. We define 3 regular operations:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Concatenation: $A \cdot B = \{xy | x \in A \text{ and } y \in B\}$
- Star: $A^* = \{x_1x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in A\}$
 - Repeat a string 0 or more times

4

Examples of regular operations

Let $A = \{good, bad\}$ and $B = \{boy, girl\}$

What is:

- $A \cup B = \{\text{good, bad, boy, girl}\}\$
- $A \cdot B = \{\text{goodboy}, \text{goodgirl}, \text{badboy}, \text{badgirl}\}$
- $A^* = \{\varepsilon, \text{good}, \text{bad}, \text{goodgood}, \text{goodbad}, \text{badgood}, \text{badbad}, \cdots \}$

Closure

A collection of objects is closed under an operation if applying that operation to members of the collection returns an object in the collection

Regular languages are closed under U , \cdot , \ast

Closure of Union

Theorem 1.25: The class of regular languages is closed under the union operation

Proof by construction

Let's consider two languages

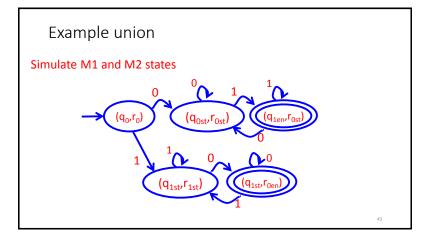
L1: start with 0, end with 1

L2: start with 1, end with 0

Construct machines for each languages
Construct machines M3 to recognize L1 U L2

41

Example union $A = \{w \mid w \text{ starts with 0 ends with 1}\} \qquad q_{\varepsilon} \qquad q_{0st} \qquad 0 \qquad q_{1en}$ $M1 \qquad \qquad 1 \qquad q_{1st} \qquad 0, 1$ $B = \{w \mid w \text{ starts with 1 ends with 0}\} \qquad r_{\varepsilon} \qquad r_{1st} \qquad 1 \qquad 0 \qquad r_{0en}$ $0 \qquad r_{0st} \qquad 0, 1 \qquad q_{1en}$



Closure of Union – Proof by Construction

Let us assume M1 recognizes language L1

• Define M1 as M1 = $(Q, \Sigma, \delta_1, q_0, F_1)$

Let us assume M2 recognizes language L2

• Define M2 as M2 = $(R, \Sigma, \delta_2, r_0, F_2)$

Proof by construction: Construct M3 to recognize $L3 = L1 \cup L2$

• Let M3 be defined as M3 = $(S, \Sigma, \delta_3, s_0, F_3)$

.

Closure of Union – Proof by Construction

• Let M3 be defined as M3 = $(S, \Sigma, \delta_3, s_0, F_3)$

Use each state of M3 to simulate being in a state of M1 and another state in M2 simultaneously

M3 states: $S = \{(q_i, r_j) \mid q_i \in Q \text{ and } r_j \in R\}$

Start state: $s_0 = (q_0, r_0)$

Accept state: $F_3 = \{(q_i, r_j) \mid q_i \in F_1 \text{ or } r_j \in F_2\}$

Transition function: $\delta_3\left(\left(q_i,r_j\right)\!,x\right) = \left(\delta_3(q_i,x),\delta_3\!\left(r_j,x\right)\right)$

Closure of Concatenation

Theorem 1.26: The class of regular languages is closed under the concatenation operation

- If A1 and A2 are regular languages, then so is $A1 \cdot A2$
- Challenge: How do we know when M1 ends and M2 begins?

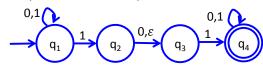
16

Determinism vs. non-determinism

Determinism: Single transition allowed given current state and given input

Non-determinism:

- multiple transitions allowed for current state and given input
- transition permitted for null input arepsilon



NFA in action

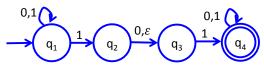
- When there is a choice, follow all paths like cloning
- If there is no forward arrow, path terminates and clone dies (no accept)
- NFA will "accept" if at least one path terminates at accept

Alternative thought:

• Magically pick best path from the set of options

18

The language of M10

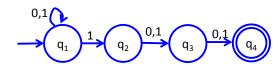


- List some accepted strings
 - **110** at third entry, we're in states $\{q_1, q_3, \text{ and } q_4\}$
- What is L(M10)?

{w | w contains 11 or 101} – correction, class answer: "contains at least two 1s is insufficient, as 10001 is not accepted by M10"

NFA construction practice

Build an NFA that accepts all strings over {0,1} with 1 in the third position from the end



If path is at q₄ and you receive more input, your path terminates

52

NFA -> DFA

Build an NFA that accepts all strings over {0,1} with 1 in the third position from the end

Can we construct a DFA for this?

Formal definition of Nondeterministic Finite Automaton

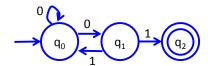
Similar to DFA: a 5-tuple $(Q, \Sigma, \delta, q_0, F)$

- Q is a finite set called states
- ullet Σ is a finite set called the alphabet
- $\delta: Q \times \Sigma \varepsilon \longrightarrow P(Q)$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

l

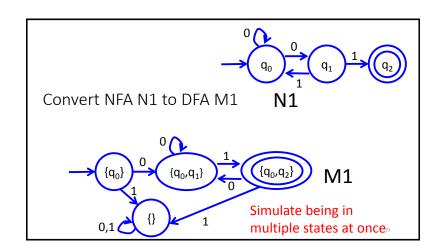
Describe M10 using formal definition $M1 = (Q, \Sigma, \delta, q_0, F)$ • δ = • $Q = \{q_0,q_1,q_2,q_3\}$ $\{q_0\}$ $\{q_0\}$ $\{q_0, q_1\}$ • $\Sigma = \{0,1\}$ $\{q_2\}$ $\{q_1\}$ q_1 $\{q_2\}$ • Start state: q₀ $\{q_3\}$ $\{q_3\}$ $\{q_2\}$ • $F = \{q_3\}$ $\{q_3\}$ q_3

Consider NFA N1



Language:

L(N1)={w | w begins with 0, ends with 01, every 1 in w is preceded by a 0}



Equivalence of NFAs and DFAs

NFAs and DFAs recognize the same class of languages

Two machines are equivalent if they recognize the same language

Every NFA has an equivalent DFA

1

Equivalence of NFAs and DFAs

NFA N1 =
$$(Q, \Sigma, \delta, q_0, F)$$

Define DFA
$$M1 = (R, \Sigma, \delta^D, r_0, F^D)$$

- R=P(Q) --- R = {{}}, {q₀}, ..., {q_n}, {q₁, q₂},...{q_{n-1}, q_n}, ...} every combination of states in Q
- $r_0 = \{q_0\}$
- $F^D = \{s \in R \mid s \text{ contains at least 1 accept state for N1}\}$
- $\delta^D(r_i,x)$ Consider all states ${\bf q_j}$ in ${\bf r_i}$, find ${\bf r_k}$ that is union of outputs for N1's $\delta({\bf q_i},x)$ for all ${\bf q_i}$

Union Closure with NFAs Theorem 1.45

- Proofs by construction fewer states!
- Any NFA proof applies to DFA

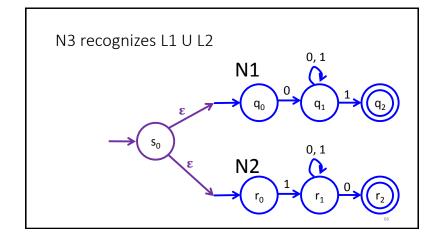
Given two regular languages $\rm A_1$ and $\rm A_2$ recognized by N1 and N2 respectively, construct N to recognize $\rm A_1UA_2$

Let's consider two languages

L1: start with 0, end with 1 L2: start with 1, end with 0

Construct machines for each languages Construct machines N3 to recognize L1 U L2

Let's consider two languages L1: start with 0, end with 1 N1 L2: start with 1, end with 0



Closure of regular languages under union

This is a good example of how to write up a Let N1 = $(Q, \Sigma, \delta_1, q_0, F_1)$ recognize L1 general proof by Let N2 = $(R, \Sigma, \delta_2, r_0, F_2)$ recognize L2 construction

N3 = $(Q_3, \Sigma, \delta_3, s_0, F_3)$ will recognize L1 U L2 iff

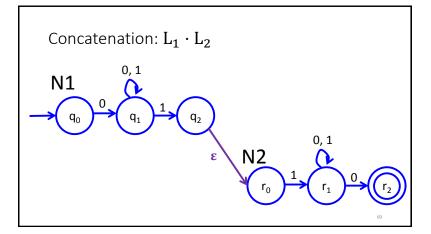
 $Q_3 = Q \cup R \cup \{s_0\}$

Start state: s₀ $F_1 = F_2 \cup F_3$

Closure under concatenation

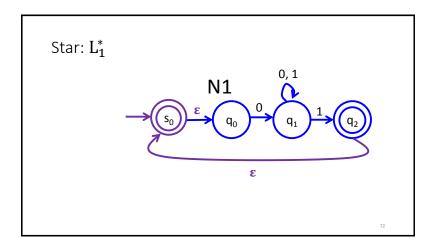
Theorem 1.47

Given two regular languages A₁ and A₂ recognized by N1 and N2 respectively, construct N to recognize $A_1 \cdot A_2$



Closure of regular languages under concatenation $\begin{array}{l} \text{This is a Bood example} \\ \text{Let N1} = (Q, \Sigma, \delta_1, q_0, F_1) \text{ recognize L1} & how to write up a construction} \\ \text{Let N2} = (R, \Sigma, \delta_2, r_0, F_2) \text{ recognize L2} & \text{Seneral proof by} \\ \text{N3} = (Q_3, \Sigma, \delta_3, s_0, F_3) \text{ will recognize L}_1 \cdot \text{L}_2 \text{ iff} \\ \text{Q}_3 = \text{Q} \cup \text{R} \\ \text{Start state: } \text{q}_0 \\ \text{F}_1 = \text{F}_3 & \delta_3(q, a) = \begin{cases} \delta_1(q, a) & \text{if } q \in \text{Q} \\ \delta_2(q, a) & \text{if } q \in \text{R} \\ r_0 & \text{if } q \in \text{F}_1 \text{ and } a = \epsilon \end{cases}$

Closure under star ${\bf Theorem~1.49}$ Prove if ${\bf A_1}$ is regular, ${\bf A_1^*}$ is also regular



Closure of regular languages under star $\begin{array}{ll} \text{This is a good example of} \\ \text{N3} = (Q_3, \Sigma, \delta_3, s_0, F_3) \text{ will recognize L1} & how to write up a sonstruction} \\ \text{N3} = (Q_3, \Sigma, \delta_3, s_0, F_3) \text{ will recognize L1}^* \text{ iff} & seneral proof by} \\ \text{Q}_3 = Q \cup \{s_0\} & \text{Start state: s}_0 \\ \text{F}_1 = F_3 \cup \{s_0\} & \\ \delta_3(q, a) = \begin{cases} \delta_1(q, a) & \text{if } q \in Q \\ q_0 & \text{if } q = s_0 \text{ and } a = \epsilon \\ s_0 & \text{if } q \in F_1 \text{ and } a = \epsilon \end{cases}$

Regular expressions

A regular expression is description of a set of possible strings using a single characters and possibly including regular operations

Examples:

- $(0 \cup 1)0^*$
- $(0 \cup 1)^*$

74

Regular expressions

A regular expression is description of a set of possible strings using a single characters and possibly including regular operations

Examples:

• $(0 \cup 1)0^*$ {0, 1, 00, 10, 000, 100, ...} • $(0 \cup 1)^*$ {0, 1, 00, 10, 01, 11, 000, 001, ...}

75

Regular expressions – formal definition

R is a regular expression if R is

- \bullet a, for some a in alphabet Σ
- E
- Ø
- R1 U R2, where R1 and R2 are regular expressions
- \bullet R1 \cdot R2, where R1 and R2 are regular expressions
- R1*, where R1 is a regular expression

This is a recursive definition

Examples of Regular Expressions

- •0*10*
- $\Sigma^* 1 \Sigma^*$
- •01 U 10
- $(0 \cup \varepsilon)(1 \cup \varepsilon)$

Examples of Regular Expressions

- 0*10*={1, 010, 100, 00100, 001, ...} = {w | w contains exactly one 1}
- $\Sigma^* 1\Sigma^* = \{1,11,01,011,001,110,111,...\} = \{w \mid w \text{ contains at least one } 1\}$
- 01 \cup 10={01, 10}
- $(0 \cup \varepsilon)(1 \cup \varepsilon) = \{01,0,1,\varepsilon\}$

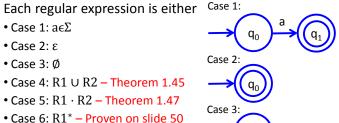
8

FA can recognize any Regular Expression

Theorem: A language is regular if and only if some regular expression describes it

- Prove: If a language is described by a regular expression, then it is regular
- Prove: If a language is regular, then it is described by a regular expression

Prove if language described regular expression, it is regular (recognized by FSA)



 q_0

