CISC 4090
 Theory of Computation

Non-regular languages

Professor Daniel Leeds dleeds@fordham.edu

JMH 332

Regular languages

Definition: a language is called a regular language if some finite automaton recognizes it

What languages cannot be recognized by an FSA
Regular languages use finite memory (finite states)
Non-regular languages require infinite memory

Are the following regular?
$\mathrm{L} 1=\{\mathrm{w} \mid \mathrm{w}$ has at least 100 1's $\}$
Yes: Start at q_{0}, For each $1 q_{k}>q_{k+1} . F=\left\{q_{100}\right\}$
$L 2=\{w \mid w$ has same number of 0 's and 1's $\}$
No: unknown number of states
$L 3=\left\{w \mid w\right.$ is of the form $\left.0^{n} 1^{n}, n>0\right\}$
No: unknown number of states

What about this class of languages
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
$\mathrm{L}_{\mathrm{n}}=\{\mathrm{w} \mid \mathrm{w}$ contains n b's in a row $\}$

- $\mathrm{L}_{3}=\{$ abbba, aabbba,ababbbba, ...\}
- $\mathrm{L}_{4}=\{$ babbbbab, bbbb, aaabbbbab, ...\}
L_{n} is regular for each value of n

Regular languages can be infinite

-E.g., a(ba)*

For FSA to generate an infinite set of strings, there must be a loop between some states

Pumping lemma

Every string in regular language L with length greater than or equal to the pumping length p can be "pumped"

Every string $s \in L(|s|>=p)$ can be written as $x y z$ where

1. For each $\mathrm{i} \geq 0, x^{i} \mathrm{z} \in \mathrm{L}$
2. $|y|>0$
3. $|x y| \leq p$

If L violates pumping lemma,
then it is not regular

Pumping lemma, continued

1. For each $\mathrm{i} \geq 0, \mathrm{xy}^{\mathrm{i}} \mathrm{z} \in \mathrm{L}$

There is a loop
2. $|y|>0$

There is a loop of letters (not of ε, which would effectively not be a loop)
3. $|x y| \leq p$

Not allowed more states than pumping length (keep memory finite!)

```
Example: L=(01)*
w=10101010 E L
Can divide into: x=1010, y=10, z=10
xy2z=1010 1010 10 -> 1010101010 \in L
    ============================
w=10 \in L
x=\varepsilon y=10 z=\varepsilon
xy2z= & 1010 \varepsilon -> 1010 \inL
xy }\mp@subsup{}{}{\textrm{z}}=\varepsilon\varepsilon\varepsilon\varepsilon\mp@code{-> \varepsilon \inL
```


Proof idea

If $|\mathrm{s}| \leq \mathrm{p}$, trivially true

Common pumping proof-by-contradiction

Define a simple word w that is guaranteed to have more than p symbols, and you know the first p symbols
If $|s|>p$, consider the states the FSA goes through

- Since there are only p states, $|s|>p$, one state must be

Show repetition of intermediate y string violates repeated

- Pigeonhole principle: There must be a cycle language rules

Prove $F=\left\{w w \mid w=(0 \cup 1)^{*}\right\}$ is not regular
$\mathrm{F}=\{11,00,0101,1010$,
11011101, ...\}
Proof by contradiction:
assume F is regular
thus, any $v \in F$ can be "pumped" if $|v|>p$

Prove $F=\left\{w w \mid w=(0 \cup 1)^{*}\right\}$ is not regular

Proof by contradiction: assume F is regular
thus, any $v \in F$ can be "pumped" if $|v|>p$

- Our solution: Let $w=0^{p} 10^{p} 1 \quad|w|>p$ so must be "pump"-able $|x y| \leq p$ so, $x=0^{f} y=0^{g}, f+g \leq p$ and $g>0$ When we pump w: $x y^{2} z$, we get $p+g 0^{\prime}$'s followed by $10^{p} 1 . x^{2} z \notin B$ Contradiction, pumped w $\notin \mathrm{F}$
$\mathrm{F}=\{11,00,0101,1010$,
11011101, ...\}

Prove $A=\left\{0^{i} 1^{j} \mid i>j>0\right\}$ is not regular

Proof by contradiction: assume A is regular
thus, any w \in A can be "pumped" if $|w|>p$

Prove $\mathrm{E}=\left\{1^{n^{2}}\right\}$ is not regular

Proof by contradiction: assume E is regular
thus, any $w \in E$ can be "pumped" if $|w|>p$
Our solution: Let $\mathbf{w}=\mathbf{1}^{\mathbf{p}^{2}} \quad|\mathrm{w}|>\mathrm{p}$, so must be "pump"-able
$|x y| \leq p$ so $|y| \leq p$
$\left|x y^{2} z\right| \leq p^{2}+p$
What's the length of the next-biggest string after $|w|=p^{2}$ $\left|w^{\text {next-biggest }}\right|=(p+1)^{2}=p^{2}+2 p+1$
Pumping w once gives length at most $p^{2}+p<p^{2}+2 p+1$
Thus, $x y^{2} z \notin E$
Contradiction, pumped w $\notin \mathrm{E}$

Prove $A=\left\{0^{i} 1^{j} \mid i>j>0\right\}$ is not regular

Proof by contradiction: assume A is regular thus, any $w \in A$ can be "pumped" if $|w|>p$

Our solution: Let $\mathbf{w}=\mathbf{0}^{\mathbf{p + 1}} \mathbf{1}^{\mathbf{p}} \quad|w|>p$, so must be "pump"-able $|x y| \leq p$ so, $x=0^{f} y=0^{g}, f+g \leq p$ and $g>0$ Let's say $x y=0^{p}$ So $z=01^{p}$
When we pump w: $x y^{2} z$ we get $0^{f} 0^{\mathrm{g}} 0^{\mathrm{g}} 0^{\mathrm{p}} 1^{\mathrm{p}} \rightarrow 0^{\mathrm{p}+\mathrm{g}+1} 1^{\mathrm{p}} \in \mathrm{A}$
Let's try pumping down: $x y^{0} z$,
we get $x z->0^{\dagger} 01^{p}$
Number of $0 s: f+1 \quad$ Number of 1s: $p=f+g \geq f+1$ $f+1 \leq p \quad$ number of $0 s<n u m b e r ~ o f ~ 1 \quad x y^{0} z \notin A$
Contradiction, pumped w $\notin \mathrm{A}$

