CISC 4090 Theory of Computation

Non-regular languages

Professor Daniel Leeds dleeds@fordham.edu JMH 332 Regular languages

Definition: a language is called a <u>regular language</u> if some finite automaton recognizes it

What languages cannot be recognized by an FSA

Regular languages use finite memory (finite states) Non-regular languages require infinite memory

Are the following regular?

L1 = {w | w has at least 100 1's} Yes: Start at q_0 , For each 1 $q_k \rightarrow q_{k+1}$. F={ q_{100} }

L2 = {w | w has same number of 0's and 1's} No: unknown number of states

L3 = {w | w is of the form 0ⁿ1ⁿ, n>0} No: unknown number of states What about this class of languages

 $\Sigma = \{a, b\}$

- $L_n = \{w \mid w \text{ contains } n \text{ b's in a row } \}$
- $L_3 = \{abbba, aabbba, ababbbba, ...\}$
- $L_4=$ {babbbbab, bbbb, aaabbbbab, ...}

 L_n is regular for each value of n

Pumping lemma, continued

1. For each $i \ge 0$, $xy^i z \in L$ There is a loop

2. |y| > 0

There is a loop of letters (not of ε , which would effectively not be a loop)

3. $|xy| \le p$

Not allowed more states than pumping length (keep memory finite!)

```
Example: L=(01)*
w=10101010 \in L
Can divide into: x=1010, y=10, z=10
xy<sup>2</sup>z = 1010 1010 10 -> 1010101010 \in L
```

```
w=10 \in L
x=\varepsilon y=10 z=\varepsilon
```

```
\begin{aligned} xy^2z &= \varepsilon \ 1010 \ \varepsilon \ {>} \ 1010 \in \mathsf{L} \\ xy^0z &= \varepsilon \ \varepsilon \ \varepsilon \ {>} \ \varepsilon \in \mathsf{L} \end{aligned}
```

Proof idea

If $|s| \le p$, trivially true

- If |s| > p, consider the states the FSA goes through
- Since there are only p states, |s|>p, one state must be repeated
- Pigeonhole principle: There must be a cycle

Common pumping proof-by-contradiction

Define a simple word w that is guaranteed to have more than p symbols, and you know the first p symbols

Show repetition of intermediate y string violates language rules

Prove B=	{0 ⁿ 1 ⁿ } is not regular	B={01, 0011, 000111, 0000111, 000001111,}	
Proof by contradiction: assume B is regular			
	thus, any $w \in B$ can be	e "pumped" if w >p	
First suggestion:	w=0011, x=0, y=01, z=1 - co xy ² z=001011∉ B	unterexample	
	Close! But maybe $ 0011 \le 1$ be problem when $ w > p$	p, how do we know this will	
Our solution:	Let w=0^p1^p w > p, so must	t be "pump"-able	
	$ xy \le p \text{ so, } x=0^f y=0^g, f+g \le p \text{ and } g>0$		
	When we pump w: xy^2z , we get $p+q$ 0's followed by	ρ1s. xy²z∉B	
	Contradiction, pumped w	∉ B	
		10	

Prove F={ww | w=(0 U 1)* } is not regular F={11, 00, 0101, 1010, 11011101, ...} Proof by contradiction: assume F is regular thus, any v \in F can be "pumped" if |v|>p

Prove F={ww w= $(0 \cup 1)^*$ } is not regular		
Proof by contradiction: assume F is regular thus, any $v \in F$ can be "pumped" if $ v >p$		
• Our solution:	Let $w=0^{p}10^{p}1$ $ w >p$ so must be "pump"-at $ xy \le p$ so, $x=0^{f} y=0^{g}$, $f + g \le p$ and $g>0$ When we pump w: $xy^{2}z$, we get $p+g$ 0's followed by $10^{p}1 \cdot xy^{2}z \notin B$ Contradiction, pumped w $\notin F$	ole
	F={11, 00, 0101, 10 11011101,}	10,

19

Prove $E=\{1^{n^2}\}$ is not regular		
Proof by contradiction: assume E is regular		
	thus, any $w \in E$ can be "pumped" if $ w > p$	
Our solution:	Let $\mathbf{w} = 1^{\mathbf{p}^2}$ w >p, so must be "pump"-able	
	$ xy \le p \text{ so } y \le p$	
	$ xy^2z \le p^2 + p$	
What's the length of the next-biggest string after w =p ²		
$ w^{next-biggest} = (p+1)^2 = p^2+2p+1$		
Pumping w once gives length at most p ² +p < p ² +2p+1		
	Thus, xy²z ∉ E	
	Contradiction, pumped w $\notin E$	
	20	

Prove $A = \{0^{i}1^{j} | i > j > 0\}$ is not regular

Proof by contradiction: assume A is regular thus, any $w \in A$ can be "pumped" if |w| > p

Prove A={	D ⁱ 1 ^j i>j>0} is not regular
Proof by contra	diction: assume A is regular thus, any $w \in A$ can be "pumped" if $ w >p$
Our solution:	Let $w=0^{p+1}1^p$ $ w >p$, so must be "pump"-able $ xy \le p$ so, $x=0^f y=0^g$, $f+g \le p$ and $g>0$ Let's say $xy = 0^p$ So $z=01^p$ When we pump $w: xy^2z$, we get $0^{f}0^{g}0^{g}0^{g}1^p \rightarrow 0^{p+g+1}1^p \in A$ Let's try pumping down : $xy^{0}z$, we get $xz \rightarrow 0^{f}01^p$ Number of 0s: $f+1$ Number of 1s: $p=f+g\ge f+1$ $f+1\le p$ number of 0s <number 1="" <math="" of="">xy^{0}z\notin A Contradiction, pumped w $\notin A$</number>