Alan Turing (1912-1954)

CISC 4090
Theory of Computation
Turing machines

Professor Daniel Leeds
dleeds@fordham.edu
JMH 332
Father of Theoretical Computer Science
Key figure in Artificial Intelligence
Codebreaker for Britain in World War I

Turing machine
Simple theoretical machine
Can do anything a real computer can do!
Detour: "Turing test"
A computer is "intelligent" if human investigator can't tell if she's talking to a human or a computer

Turing machine

Simple theoretical machine

Can do anything a real computer can do!

Tape

… प11111111.. $\xrightarrow[\sim 1]{\sim} \rightarrow$ Read/write head Program

Review of machines

- Finite state automaton (Regular languages)

- Push down automaton (Context free languages)

- Turing machine (beyond CFLs) Tape

A Turing Machine for $\mathrm{B}=\left\{\mathrm{w} \# \mathrm{w} \mid w \in\{0,1\}^{*}\right\}$

Assume the string is written on the tape and you start at the beginning of the string. What can we do?

Strategy:

Find left-most 0-or-1 character in first word
If match left-most character in second word, X out both chars
Else reject

$$
\begin{aligned}
& \text { ~~~011000\#011000~~~ } \\
& \begin{array}{c}
\sim \sim \sim \text { X } 11000 \text { \# X } 11000 \sim ~ ~ \\
\sim \sim \sim
\end{array}
\end{aligned}
$$

If no characters left, accept

How do we move this with single actions:
move-by-one and write?

Turing machine: the formal definition

7 tuple: $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$
Q is set of states
Σ is input alphabet
Γ is the tape alphabet; blank \in and $\Sigma \in \Gamma$ $\delta: \mathrm{Q} \times \Gamma \rightarrow \mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$ transition function Start, accept, and reject state: $q_{0}, q_{\text {accept }} \mathrm{q}_{\text {reject }}$

The transition function | Given state q and symbol a at present location on tape, |
| :--- |
| change to state r, change symbol on tape to b, move Left or Right |
| Change in: (state, tape content, head location) |
| - called "configuration" |

Strategy: $\mathrm{B}=\left\{\mathrm{w} \# \mathrm{w} \mid w \in\{0,1\}^{*}\right\}$

Find left-most 0-or-1 character in first word
If match left-most character in second word, X out both chars
Else reject
If no characters left, accept

Strategy: $B=\left\{\mathrm{w} \# \mathrm{w} \mid w \in\{0,1\}^{*}\right\}$

Define TM state sequence for each big-picture algorithmic step
Given character s in left word

1. Move to right word
2. Check if first available symbol in right word $==s$
3. If match, keep going; else reject

Strategy: $\mathrm{B}=\left\{\mathrm{w} \# \mathrm{w} \mid w \in\{0,1\}^{*}\right\}$

Strategy: $\mathrm{B}=\left\{\mathrm{w} \# \mathrm{w} \mid w \in\{0,1\}^{*}\right\}$
 Typical big-picture solution

Find left-most 0-or-1 character in first word
If match left-most character in second word, X out both chars

Else reject

If no characters left, accept

Strategy: $B=\left\{\mathrm{w} \# \mathrm{w} \mid w \in\{0,1\}^{*}\right\}$

Find left-most 0-or-1 character in first word
If match left-most character in second word, X out both chars

Else reject
If no characters left, accept

~~~011000\#011000~~~
~~~X 11000 \# X 11000 ~~~
~~~XX1000\#XX1000~~~

Analysis: We will always get an answer (accept or reject), because problem gets smaller after each step

\section*{Example non-halting machine}


Determining if a machine halts can be hard!

\section*{"Turing recognizable" vs. "Decidable"}
\(L(M)\) - "language recognized by \(M\) " is set of strings \(M\) accepts
Language is Turing recognizable if some Turing machine recognizes it
- Also called "recursively enumerable"

Machine that halts on all inputs is a decider. A decider that recognizes language \(L\) is said to decide language \(L\)

Language is Turing decidable, or just decidable, if some Turing machine decides it

Turing machine structure Infinite tape

At each step
- Must move left/right on tape
- Can change state
- Can change tape content


When reaches accept or reject state,

terminates and outputs "accept" or "reject"
Can loop forever

Turing Machine for \(\mathrm{C}=\left\{0^{2^{n}} \mid n \geq 0\right\}\)

\section*{Recursive division by 2}

Sweep left to right across tape, cross off every-other 0
If
- Exactly one 0: accept
- Odd number of 0 s : reject
- Even number of 0 s , return to front


\section*{TM M3 to decide \(D=\left\{a^{i} b^{j} c^{k} \mid k=i x j\right.\) and \(\left.i, j, k>0\right\}\)}

Scan string to confirm form is \(\mathrm{a}^{+} \mathrm{b}^{+} \mathrm{c}^{+}\)
- if so: go back to front; if not: reject
\(X\) out first \(a\), for each \(b, x\) off that \(b\) and \(x\) off one \(c\)
- If run out of c's but b's left: reject

Restore crossed out b's, repeat b-c loop for next a
- If all a's gone, check if any c's left
- If c's left: reject; if no c's left: accept


\section*{Transducers: generating language}

So far our machines accept/reject input
Transduction: Computers transform from input to output
- New TM: given \(i\) a's and \(j\) b's on tape, print out ixj c's

Transducer: Write ck , k=ixj, given i a's, j b's,
Scan string to confirm form is \(a^{+} b^{+}\)
- if so: go back to front; if not: reject

X out first a , for each \(\mathrm{b}, \mathrm{Y}\) off that b and add c to the end
Restore crossed out b's, repeat b-c loop for next a
- If all a's gone, accept


\section*{TM 4: Element distinctiveness}

Given a list of strings over \(\{0,1\}\), separated by \#, accept if all strings are different:

Example: 01101\#1011\#00010

\section*{TM 4 solution}
1. Place mark on top of left-most symbol. If it is blank: accept; if it is \#: continue, otherwise: reject
2. Scan right to next \# and place mark on it. If none encountered and reach blank: accept
3. Zig-zag to compare strings to right of each marked \#
4. Move right-most marked \# to the right. If no more \#: move left-most \# to its right and the right-most \# to the right of the new first marked \#. If no \# available for second marked \#: accept
5. Go to step 3

\section*{Decidability}

How do we know decidable?
- Simplify problem at each step toward goal
- Can prove formally - number of remaining symbols at each step

\section*{Many equivalent variants of TM}
-TM that can "stay put" on tape for a given transition
-TM with multiple tapes
-TM with non-deterministic transitions
Showing language is Turing recognizable but not decidable is harder

Can select convenient alternative for current problem

\section*{"Stay put" TM equivalent to Traditional TM}

Design TM to simulate Stay Put TM as follows:

IF \(\delta_{\text {spTM }}\left(q_{i}, a\right)=\left(q_{j}, b, L\right)\), THEN: \(\delta_{T M}\left(q_{i}, a\right)=\left(q_{j}, b, L\right)\)
IF \(\delta_{\text {spTM }}\left(q_{i}, a\right)=\left(q_{j}, b, R\right)\), THEN: \(\delta_{T M}\left(q_{i}, a\right)=\left(q_{j}, b, R\right)\)

IF \(\delta_{\text {spTM }}\left(q_{i}, a\right)=\left(q_{j}, b\right.\), StayPut \()\),
\[
\text { THEN: } \quad \delta_{T M}\left(q_{i}, a\right)=\left(q_{\text {new }}, b, R\right) \text { and }
\]
\(\delta_{T M}\left(q_{\text {new }}, z\right)=\left(q_{\text {new }}, z, L\right) \forall z \in \Gamma\)

\section*{MultiTape TM}
- Each tape has own ReadWrite Head
- Initially tape 1 has input string, all other tapes blank
- Transition does read/write on all heads at once


\section*{Equivalence of SingleTape and MultiTape TM}

\section*{Convert \(k\) tape TM M to single tape TM S}
- Contents of M's tapes separated by \# on S's tape
- Mark current location on each tape

\section*{Equivalence of Deterministic and Nondeterministic TMs}
- Try all possible non-deterministic branches - breadth first search
- DTM accepts if NTM accepts
- Read stage: sweep through all \(k\) tapes to check input
- Write stage: sweep through all \(k\) tapes to write output and update marker (read head) locations
- Head location out of range?
- Add new position to relevant tape, shift all other characters to right
- Can use three tapes: 1 for input, 1 for current branch, 1 to track tree position

\section*{Enumerators}

Enumerator E is TM with printer attached
- TM can send strings to be output by printer
- Input tape starts blank
- Language enumerated by E is collection of strings printed
- E may print infinitely

Theorem: A language is Turing-recognizable iff some enumerator enumerates it

\section*{Proof of enumerator equivalence}

If enumerator \(E\) enumerates language \(A, T M M\) recognizes it
- For every \(w\) generated by \(E, M\) runs \(E\) and checks if \(w\) in output

If TM \(M\) recognizes language, \(A\), can construct enumerator \(E\) for A:
- s1, s2, s3, ... be list of all possible strings
- For \(\mathrm{i}=1,2, \ldots\)
- Run M for i steps on s1, s2, ..., si
- If string accepted, print it

\section*{Common themes in TM variants Control}
- Unlimited access to unlimited memory
- Finite work performed at each step
\begin{tabular}{c|c|c} 
& Read/write head \\
\hline a b a a b c b a a \\
\hline
\end{tabular}

Note, all programming languages are equivalent
- Can write compiler for C++ in Java

\section*{An Algorithm}
is a collection of simple instructions for carrying out some task

\section*{Hilbert's Problems}

In 1900, David Hilbert proposed 23 mathematical problems

Problem \#10
- Devise algorithm to determine if a polynomial has an integral root.
- Example: \(6 x^{3} y z^{2}+3 x y^{2}-x^{3}-10\) has root \(x=5, y=3, z=0\)

General algorithm for Problem 10 does not exist!

\section*{Church-Turing Thesis}
- Intuition of thesis: algorithm == corresponding Turing machine
- Algorithm described by TM also can be describe by \(\lambda\)-calculus (devised by Alonzo Church)

\section*{Hilbert's \(10^{\text {th }}\) problem}

Is language \(D\) decidable, where \(D=\{p \mid p\) is polynomial with integral root\}

Devise procedure:
- Try all ints, starting at \(0: x=0,1,-1,2,-2,3,-3, \ldots\)
- You may never terminate - so not decidable

\section*{Levels of description}

\section*{For FA and PDA}
- Formal or informal description of machine operation

For TM
- Formal or informal description of machine operation
- OR just describe algorithm
- Assume TM confirms input follows proper tape string format

Exception: univariate case for root is decidable

\section*{Graph connectivity problem}

Let A be all strings representing graphs that are connected (any node can be reached by any other)
\(A=\{<G>\mid G\) is connected undirected graph \(\}\)
Describe TM M to decide language

\section*{Algorithm:}
1. Select and mark first node of G
2. Repeat below until no new nodes marked:
- For each node in \(G\), mark if it is attached to already-marked node
3. Scan all nodes of \(G\) - if all marked, accept; else, reject~~~

