11/2/2019

CISC 4090
Theory of Computation

Turing machines

Professor Daniel Leeds
dleeds@fordham.edu
JMH 332

Alan Turing (1912-1954)

Father of Theoretical Computer Science
Key figure in Artificial Intelligence

Codebreaker for Britain in World War |

Turing machine

Simple theoretical machine

Can do anything a real computer can do!

Tape
LI TTTTTT]

G Read/wr

ite head

Detour: “Turing test”

A computer is “intelligent” if
human investigator can’t tell if
she’s talking to a human or a
computer

®
~

11/2/2019

Turing machine

Simple theoretical machine

Can do anything a real computer can do!

Tape
< O TTITT11)

{— Read/write head

Review of machines

* Finite state automaton (Regular languages)

* Push down automaton ~_fnite
(Context free languages)

2
(T

input tape

stack

* Turing machine (beyond CFLs) Tape

v Read/write head

Turing machine structure

Infinite tape

Control
State Machine

At each step

* Must move left/right on tape
* Can change state

* Can change tape content

l Read/write head
010012100

When reaches accept or reject state, Tape
terminates and outputs “accept” or “reject”

Can loop forever

A Turing Machine for B={w#w|w € {0,1}*}

Assume the string is written on the tape and you start at the
beginning of the string. What can we do?

G <>
QO —0

Control
State Machine

|

~01001#01001~
Tape

11/2/2019

Strategy:

Find left-most 0-or-1 character in first word

If match left-most character in second word, X out both chars

Else reject
~~~011000#011000~~~

~~~X11000#X11000~~"~

If no characters left, accept ~ e XX1000#XX1000~~~

How do we move this with single actions:
move-by-one and write?

Turing machine: the formal definition

7 tuple: (Q: %,T,6,q0, Qaccept qreject)

Qs set of states

2 is input alphabet

I"is the tape alphabet; blanke T'and X2 €T
6:QxT - Q xT x{L,R} transition function
Start, accept, and reject state: gy, A,ccepts Areject

The transition function

§:QxT'->QxTIx{L R}
Given state g and symbol a at present location on tape,
change to state r, change symbol on tape to b, move Left or Right

Change in: (state, tape content, head location)
— called “configuration”

The transition function

Example:)

Start at q,. Current position underlined.

Step0:q, ~0011#~ ~0011#~

Stepligs ~0001#~ t ~0201#~

Step2:q, Y01014#~
Step3:q, Y0101#~

11/2/2019

The transition function

Example:

Start at q,. Current position underline

Step0:q, ~00#1#~ ~00#1#"~

Stepl:q, ~OOH1#~ t ~02#1#~

Step 2:q, Tape:???
Step3:q, Tape:???

Strategy: B={w#w|w € {0,1}*}
Find left-most 0-or-1 character in first word

If match left-most character in second word, X out both chars

Else reject
~~~011000#011000~~"~

~~~X11000#X11000~~"~

If no characters left, accept X X1000#XX1000~~~

Strategy: B={w#w|w € {0,1}"}

Define TM state sequence for each big-picture algorithmic step
Given character s in left word

1. Move to right word

2. Check if first available symbol in right word == s

3. If match, keep going; else reject ~~~0110008#011000~~~

~~~X11000#X11000~~"~
~v~XX1000#XX1000~ ™~

Strategy: B={w#w|w € {0,1}*}




11/2/2019

Strategy: B={w#w|w € {0,1}*}
0-X,R
Move to right word 0—O0,R
1-1,R
#->#R
Pass right of #
Given character s in left word
1. Move to right word

2. Check if first available symbol
in right word ==s

Check if first
free symbol is 0

3. If match, keep going; else reject

1-XR

0-0,R
1-1,R

#—->#R

Check if first
free symbol is 1

Strategy: B={w#w|w € {0,1}*}
0-X,R

Move to right word 0~ 0,R
1-1,R

#->#R
Pass right of #
X=X R

N
Go back to

left word

Strategy: B={w#w|w € {0,1}*}

Go back to left word
# - #L

Go to left-most letter ¢ - 0,1
inleftword 1-1L
X->X,R

0-0,L
1-1,L
X->X,L

Strategy: B={w#w|w € {0,1}*}
Typical big-picture solution

Find left-most 0-or-1 character in first word

If match left-most character in second word, X out both chars
Else reject

~~~011000#011000~~~
~~~X11000#X11000~~~

If no characters left, accept ~ e XX1000#XX1000~~~




11/2/2019

Strategy: B={w#w|w € {0,1}*}
Find left-most 0-or-1 character in first word

If match left-most character in second word, X out both chars

Else reject ~~~011000#011000~~"~
~~~X11000#X11000~~~

If no characters left, accept M e XX1000#XX1000~~~

Analysis: We will always get an answer
(accept or reject), because problem gets
smaller after each step

“Turing recognizable” vs. “Decidable”

L(M) — “language recognized by M” is set of strings M accepts

Language is Turing recognizable if some Turing machine recognizes it

* Also called “recursively enumerable”

Machine that halts on all inputs is a decider. A decider that
recognizes language L is said to decide language L

Language is Turing decidable, or just decidable, if some Turing
machine decides it

Example non-halting machine
0-0R

Q ~0100101001"~
4

1-0,R 1-1,L\0-1,R

Determining if a machine halts can be hard!

0-R 150,

l AU.J'.U*R o
Ta}_@ @="L

Control
State Machine
l Read/write head

010012100

Turing machine structure

Infinite tape

At each step
* Must move left/right on tape

* Can change state

* Can change tape content

When reaches accept or reject state, Tape
terminates and outputs “accept” or “reject”

Can loop forever

11/2/2019

. . n
Turing Machine for C={0%" | n > 0}
Recursive division by 2

Sweep left to right across tape, cross off every-other 0

If

* Exactly one 0: accept

* Odd number of Os: reject

¢ Even number of Os, return to front

Alternating Os in action:

TM M2 “decides”
language C

If you land on a location and want to
cross it out, but itis a ~, you crossed
out an even number of Os — do
another loop!

If you land on a location and want to
skip over it, but it is a ~, you crossed
out an odd number of Os — reject!

Round 1

Round 2

~~~00000000~~~
~~~X0000000~~"™
~~~X0000000~~~
~~~X0X00000~ ™

~~Y~YX0X0XoXo~~
~~Y~YX0X0X0X0 v
~~Y~YX0X0XoXxo~~r

~~MXOX0X0XO0 ™~~~
~~MXOXOXO0X0~ ™

MM XXXOXXX0v

paJ ul payJew

peay pead O uoi3edoT

Language D={a'bic* | k=ixj and i,j,k>0}

Multiplication on a Turing Machine!
Consider 2x3=6

~~~aabbbcccccecr~~

TM M3 to decide D={a'bick | k=ixj and i,j,k>0}

Scan string to confirm form is a*b*c*
*if so: go back to front; if not: reject
X out first a, for each b, x off that b and x off one c

* If run out of ¢’s but b’s left: reject

Restore crossed out b’s, repeat b—c loop for next a
*If all a’s gone, check if any c’s left

« If ¢’s left: reject; if no c’s left: accept




11/2/2019

" . " . e ~~aabbbcccccc~~ . .
Multiply” in action: £ % |~~aabbbccccce~~ . Transducers: generating language
= —
c o o 3
o eee =S Q)
o ° ~~aabbbcccccc~~ §§ So far our machines accept/reject input
TM M3 “decides” e |oegabbb S
i ~~aa ccccece™~ " 0] H . H
language D S ol |7 s Transduction: Computers transform from input to output
—~c Xabbbcccccc = . ., L, . .,
96| 2 *New TM: given i a’s and j b’s on tape, print out ixj c’s
Symbol X is an a or c that is S ~~XaBbbccccce~~ o
gone for good = ~~XaBbbXccccc~"™
. . ©
Symboly is a b temporarily o cg)
out of service as you go o) ~~ ~
through all the other b’s i = XaBBbXccccc |
. K L C " " . ~~aabbb~~rre
Transducer: Write c*, k=ix], givenia’s, j b’s, Transducer” in action: ~nXabbb e~~~
Scan string to confirm form is a*b* ~~XaBbbc~~rv~w
*if so: go back to front; if not: reject
X out first a, for each b, Y off that b and add c to the XaBBbcc
end e
, - . ~~Xabbbcccrvr
Restore crossed out b’s, repeat b—c loop for next a Symbol X is an a that is
*If all a’s gone, accept removed ~~XXBBBcccccc™
Symboly is a b temporarily
out of service as you go Location of read head
through all the other b’s marked in red




11/2/2019

TM 4: Element distinctiveness

Given a list of strings over {0,1}, separated by #, accept if all
strings are different:

Example: 01101#1011#00010

TM 4 solution

1. Place mark on top of left-most symbol. If it is blank: accept;

if it is #: continue, otherwise: reject

2. Scan right to next # and place mark on it. If none
encountered and reach blank: accept

3. Zig-zag to compare strings to right of each marked #

4. Move right-most marked # to the right. If no more #: move
left-most # to its right and the right-most # to the right of the

new first marked #. If no # available for second marked #:

accept
5.Gotostep 3

TM 4 solution: alternate description

1. Mark left-most un-removed word as wordA; if none
available, accept

2. Move to right until reach new un-removed word (if reach
blank, loop to step 1)

3. Mark new word as wordB

4. If wordA=wordB, reject; else temporarily remove wordB
and continue

5. Loop to step 2

“Distinctiveness

checker” in action:

01 - marked as wordA
0 1 - marked as wordB
X —removed fully

8 1 —temporarily ignored

~~001#11#101~~
~~001#11#101~"~

~~001#11#101~"~
~~001#11#101~"~
~~001#%2#101"~"~

~eXXXH#L11#101~~

paJ ul payJew

peay pead 40 Uoied0]




11/2/2019

Decidability

How do we know decidable?
* Simplify problem at each step toward goal

* Can prove formally — number of remaining symbols at
each step

Showing language is Turing recognizable but not
decidable is harder

Many equivalent variants of TM

* TM that can “stay put” on tape for a given transition
* TM with multiple tapes

* TM with non-deterministic transitions

Can select convenient alternative for current problem

“Stay put” TM equivalent to Traditional TM

Design TM to simulate Stay Put TM as follows:

IF Ssprm(qia) = (qj,b, L) , THEN: 67 (q;, @) = (qj,b,L)
IF 8sprm(qi,a) = (qj,b, R) , THEN: 67(q;, @) = (qj,b,R)

IF SspTM(ql‘, a) = (qj,b,StayPut) )
THEN: 6TM(QL" a) = (qTLEWr b,R) and
6TM(Qnew: z) = (qnew,z, L)Vz€eT

MultiTape TM

* Each tape has own ReadWrite Head
* Initially tape 1 has input string, all other tapes blank
* Transition does read/write on all heads at once

|

10



11/2/2019

Equivalence of SingleTape and MultiTape TM

Convert k tape TM M to single tape TM S
* Contents of M’s tapes separated by # on S's tape
* Mark current location on each tape

* Read stage: sweep through all k tapes to check input

* Write stage: sweep through all k tapes to write output and
update marker (read head) locations

* Head location out of range?
* Add new position to relevant tape, shift all other characters to right

Equivalence of Deterministic and
Nondeterministic TMs

* Try all possible non-deterministic branches — breadth first
search

* DTM accepts if NTM accepts

* Can use three tapes: 1 for input, 1 for current branch, 1 to
track tree position

Enumerators - /s /7]

[Ti[olalo]... workupe

Enumerator E is TM with printer attached

* TM can send strings to be output by printer
* Input tape starts blank

* Language enumerated by E is collection of strings printed
* E may print infinitely

Theorem: A language is Turing-recognizable iff some
enumerator enumerates it

Proof of enumerator equivalence

If enumerator E enumerates language A, TM M recognizes it
* For every w generated by E, M runs E and checks if w in output

If TM M recognizes language, A, can construct enumerator E
for A:
*sl,s2,s3, ... be list of all possible strings
*Fori=1,2,...
* Run M for i stepson sl, s2, ..., si
« If string accepted, print it

11



11/2/2019

Common themes in TM variants| control

State Machine
* Unlimited access to unlimited memory 1 Read/write head

* Finite work performed at each step

abaabcbaa

Tape
Note, all programming languages are equivalent

* Can write compiler for C++ in Java

An Algorithm

is a collection of simple instructions for carrying out
some task

Hilbert’s Problems

In 1900, David Hilbert proposed 23 mathematical problems

Problem #10

* Devise algorithm to determine if a polynomial has an integral
root.

* Example: 6x3yz2+3xy%-x3-10 has root x=5, y=3, z=0
General algorithm for Problem 10 does not exist!

Church-Turing Thesis

* Intuition of thesis: algorithm == corresponding Turing machine

* Algorithm described by TM also can be describe by
A—calculus (devised by Alonzo Church)

12



11/2/2019

Hilbert’s 10t problem

Is language D decidable, where D={p | p is polynomial with
integral root}

Devise procedure:
* Try all ints, starting at 0: x=0, 1, -1, 2,-2, 3, -3, ...
* You may never terminate — so not decidable

Exception: univariate case for root is decidable

Levels of description

For FA and PDA
* Formal or informal description of machine operation

For TM
* Formal or informal description of machine operation

* OR just describe algorithm
* Assume TM confirms input follows proper tape string format

Graph connectivity problem

Let A be all strings representing graphs that are connected (any node
can be reached by any other)

A={<G> | G is connected undirected graph}
Describe TM M to decide language

Algorithm:
1. Select and mark first node of G

2. Repeat below until no new nodes marked:
* For each node in G, mark if it is attached to already-marked node

3. Scan all nodes of G —if all marked, accept; else, reject

13



