9/28/2017

CISC 4090
Theory of Computation

Non-regular languages

Professor Daniel Leeds
dleeds@fordham.edu
JMH 332

Regular languages

Definition: a language is called a regular language if some
finite automaton recognizes it

What languages cannot be recognized by an FSA

Regular languages use finite memory (finite states)
Non-regular languages require infinite memory

Are the following regular?

L1 ={w | w has at least 100 1’s}
Yes: Start at q,, For each 1 g, -> Q. - F={d190}

L2 ={w | w has same number of 0’s and 1's}
No: unknown number of states

L3 ={w | wis of the form 0"1", n>0}
No: unknown number of states

What about this class of languages

r={ab}

L,={w | w contains nb’s in a row }
* L;={abbba, aabbba,ababbbba, ...}

* L,={babbbbab, bbbb, aaabbbbab, ...}

L, is regular for each value of n

9/28/2017

Regular languages can be infinite
*E.g., a(ba)’b

b
On0=0
a

Pumping lemma

Every string in regular language L with length greater than or
equal to the pumping length p can be “pumped”

Every string s € L (|s|>=p) can be written as xyz where
1. Foreachi >0, xy'z € L

2. ly| >0
For FSA to generate an infinite set of strings, there 3 |xyl <p -
must be a loop between some states , , |
If L violates pumping lemma, j .
then it is not regular e) A
Pumping lemma, continued Proof idea

1.Foreachi>0,xy'z €L
There is a loop

2.]y| >0

There is a loop of letters (not of €, which would effectively not
be a loop)

3. Ixyl <p
Not allowed more states than pumping length (keep memory
finite!)

If |s| < p, trivially true

If |s|>p, consider the states the FSA goes through

* Since there are only p states, |s|>p, one state must be
repeated

* Pigeonhole principle: There must be a cycle

9/28/2017

Prove B={0"1"} is not regular

B={01, 0011, 000111,
00001111,}

Proof by contradiction: assume B is regular

thus, any w € B can be “pumped” if |[w|>p

First suggestion: w=0011, x=0, y=01, z=1 — counterexample

Our solution:

xy?z=001011¢ B

Close! But maybe |0011|< p, how do we know this will
be problem when |w|>p

Let w=0P1P|w|>p, so must be “pump”-able

[xy| < pso, x=0fy=08, f+ g < pandg>0

When we pump w: xy?z,
we get p+g 0’s followed by p 1s. xy?z ¢ B

Contradiction, pumped w € B

Common pumping proof-by-contradiction

Define a simple word w that is guaranteed to have
more than p symbols, and you know the first p symbols

Show repetition of intermediate y string violates
language rules

Prove F={ww | w=(0 U 1)* } is not regular

Proof by contradiction: assume F is regular

thus, any v € F can be “pumped” if |v|>p

* Qur solution: Let w=0P10P1 |w|>p so must be “pump”-able

[xy| < pso, x=0fy=08, f+ g < p and g>0

When we pump w: xy?z,
we get p+g 0’s followed by 10P1 . xy%z ¢ B

Contradiction, pumped w &€ F

F={11, 00, 0101, 1010,
11011101, ...}

Prove E={1n2} is not regular

Proof by contradiction: assume E is regular
thus, any w € E can be “pumped” if |[w|>p

Our solution: Letw = 1 |w|>p, so must be “pump”-able
Ixy| <psolyl<p
Ixy’z| < p?+p
What'’s the length of the next-biggest string after |w|=p?
|Wnext—biggest| = (p+1)2 = p2+2p+1
Pumping w once gives length at most p2+p < p2+2p+1
Thus, xy?z ¢ E
Contradiction, pumpedw ¢ E

Prove A={0'1 | i>j>0} is not regular

Proof by contradiction: assume A is regular
thus, any w € A can be “pumped” if |w|>p

Our solution: Let w=0P*11P |w|>p, so must be “pump”-able
|xy| < p so, x=0fy=08, f+ g < p and g>0
Let’s say xy = OP So z=01P

When we pump w: xy?z,

we get 0f080801P -> QP*&*11P € A

Let’s try pumping down: xy°z,

we get xz -> 0f01P

Number of Os: f+1 Number of 1s: p=f+g>f+1
f+1<p number of Os<number of 1 xy%z¢ A

Contradiction, pumped w & A

1

9/28/2017

