CISC 4090 Theory of Computation

Context-Free Languages and Push Down Automata

Professor Daniel Leeds dleeds@fordham.edu JMH 332 Languages: Regular and Beyond

Regular:

- Captured by Regular Operations $(a \cup b) \cdot c^* \cdot (d \cup e)$
- Recognized by Finite State Machines

Context Free Grammars:

- Human language
- Parsing of computer language

An example Context-Free Grammar

Grammar G1

 $A \rightarrow 0A1$

 $A \rightarrow B$ $B \rightarrow \#$ Example strings generated:

#, 0#1, 00#11, 000#111, ...

 $L(G1) = \{0^n # 1^n \mid n \ge 0\}$

Variables: A, B; Terminals: 0, 1, #

One start variable: A

Substitution rules/productions

• Variable -> Variables, Terminals

Example English Grammar

Sentence -> NounPhrase VerbPhrase

NounPhrase -> Article NounSub

NounSub -> Noun | Adjective NounSub

VerbPhrase -> Verb | Verb NounPhrase

Noun -> Girl | Boy | Duck | Ball

Article -> The | A

Verb -> Throws | Sings

Example 1:

S -> NP VP -> A NS V

-> A N V

-> The Boy Sings

Example 2:

S -> NP VP

-> A NS V

-> A N V

-> A Duck Throws

Formal CFG Definition

A CFG is a 4-tuple (V, Σ, R, S)

- V is finite set of variables
- Σ finite set of terminals
- R finite set of rules
- $S \in V$ start variable

YetaAnother example

$$G3 = (\{S\}, \{a, b\}, R, S)$$

R: $S \rightarrow aSb \mid SS \mid \epsilon$

Example strings generated:

L(G1) = {

Example rule expansion:

Another example S -> aSb S -> SS aaSbb aSb aSb aSb aSb aSb asb aaSbb aeb aaSbb aeb aasbb aeb aaebb

abaabb

Example strings generated:

ε, ab, abab, aabb, aaabbbab, ababababab, abaaabbb, ...

L(G3) = {a's & b's; each a is followed by a matching b, every b matches exactly one corresponding preceding a}
(like parenthesis matching)

Another example

 $G4 = ({A, B, C}, {a, b, c}, R, A)$

R: $A \rightarrow aA \mid BC \mid \epsilon$

 $B \to Bb \mid C$

 $C \to c \mid \epsilon$

Example strings generated: ε, aaa, cbbc, aacc

L(G4) = {Hard to describe... }

Designing CFGs

Creativity required

- If CFL is union of simpler CFL, design grammar for simpler ones (G1, G2, G3), then combine: S -> G1 | G2 | G3
- If language is regular, can make CFG mimic DFA

.0

Example: express as CFG

$$Q_0 \rightarrow 1Q_1$$

 $Q_1 \rightarrow 0Q_1 \mid 1Q_2$
 $Q_2 \rightarrow \varepsilon$

12

Designing CFGs

Creativity required

• If language is regular, can make CFG mimic DFA

Match each state with a single corresponding variable

$$Q=\{q_0,...,q_n\}$$
 $V=\{R_0,...,R_n\}$

Start state q_0 corresponds to state variable S -> R_0

Replace transition function with Production rule

$$\delta(q_i, a) = q_i$$

$$R_i \rightarrow aR_j$$

Accept state q_k : transition to ε $R_k \to \varepsilon$

4.2

Chomsky Normal Form

CFG is in Chomsky normal form if every rule takes form:

$$A \rightarrow BC$$

$$A \rightarrow a$$

- B and C may not be the start variables
- ullet The start variable may transition to arepsilon

Any CFL can be generated by CFG in Chomsky Normal Form

Converting to Chomsky Normal Form

- $S_0 \rightarrow S$ where S was original start variable
- Remove $A \to \varepsilon$
- Shortcut all unit rules Given $A \to B$ and $B \to u$, add $A \to u$
- Replace variable-terminal rules with variable-variable rules Given $A \to Bc$, add $U_C \to c$ and change A to $A \to BU_C$
- Replace rules $A \to u_1u_2u_3\dots u_k$ with: $A \to u_1A_1, A_1 \to u_2A_2, A_2 \to u_3A_3, \dots, A_{k-2} \to u_{k-1}u_k$

```
Step 2: Remove \varepsilon,
      Conversion practice
                                                                  S_0 \to S
                              Step 1: S_0->S,
Non-normal form:
                                                                  S \rightarrow aSa|bX|b
                                     S_0 \to S
                                                                  X \rightarrow Ycc
       S \rightarrow aSa|bX
                                    S \rightarrow aSa|bX
       X \to Ycc | \varepsilon
                                                                  Y \rightarrow d \mid c
                                    X \to Ycc | \varepsilon
       Y \rightarrow d \mid c
                                    Y \rightarrow d \mid c
                                                       Step 3: Use unit rules,
                                                               S_0 \rightarrow aSa|bX|b
                                                               S \rightarrow aSa|bX|b
                                                               X \rightarrow Ycc
                                                               Y \rightarrow d|c
```

Step 5: Reduce multi-variable Conversion practice $S_0 \to AN|BX|b$ Step 4: Replace terminals, $S \rightarrow AN|BX|b$ $S_0 \rightarrow ASA|BX|b$ $X \rightarrow YM$ $S \rightarrow ASA|BX|b$ Step 3: Use unit rules, $Y \rightarrow d|c$ $X \rightarrow YCC$ $S_0 \rightarrow aSa|bX|b$ $A \rightarrow a$ $Y \rightarrow d \mid c$ $S \rightarrow aSa|bX|b$ $B \rightarrow b$ $A \rightarrow a$ $X \rightarrow Ycc$ $C \rightarrow c$ $B \rightarrow b$ $N \to SA$ $Y \rightarrow d \mid c$ $C \rightarrow c$ $M \rightarrow CC$

Ambiguity – examples

A grammar may generate a string in multiple ways

Math example:

 $Expr \rightarrow Expr + Expr | Expr \times Expr | Expr | a$

English example:

the girl touches the boy with the flower

Ambiguity – definitions

A grammar generates a string ambiguously if there are two or more different parse trees

Definitions:

- <u>Leftmost derivation</u>: at each step the leftmost remaining variable is replaced
- w is derived **ambiguously** in CFG G if there exist more than one leftmost derivations

20

Conversion practice Step2: Replace terminals Step 1: Replace unit $S \rightarrow AA|BXC$ Non-normal form: rules $X \rightarrow XC|YCC|a$ $S \rightarrow aa|bXc \qquad S \rightarrow aa|bXc \qquad Y \rightarrow YCC|a$ $X \rightarrow Xc|Y \qquad X \rightarrow Xc|Ycc|a \qquad A \rightarrow a$ $Y \rightarrow Ycc|a \qquad Y \rightarrow Ycc|a \qquad B \rightarrow b$ $C \rightarrow c$

Conversion practice Step 3: Reduce multi-var Step2: Replace terminals $S \to AA|BN$ $S \to AA|BXC$ $X \to XC|YM|a$ $X \rightarrow XC|YCC|a$ $Y \rightarrow YM | a$ $Y \rightarrow YCC \mid a$ $A \rightarrow a$ $A \rightarrow a$ $B \rightarrow b$ $B \rightarrow b$ $C \rightarrow c$ $C \rightarrow c$ $N \to XC$ $M \rightarrow CC$

PDA and Language 0ⁿ1ⁿ

Read symbol from input, push each 0 onto stack As soon as see 1's, start popping 0 for each 1 seen

- If finish reading and stack empty, accept
- If stack is empty and 1's remain, reject
- If inputs finished but stack still has 0's, reject
- In 0 appears on input, reject

25

Definition of PDA

A PDA is a 6-tuple $(Q,\Sigma,\Gamma,\delta,q_0,F)$ where Q, $\Sigma,\Gamma,$ and F are finite sets

- Q is sets of states
- ullet Σ is the input alphabet
- ullet Γ is the stack alphabet
- δ : $Q \times \Sigma \epsilon \times \Gamma \epsilon \to P(Q \times \Gamma \epsilon)$ is transition function
- $q_0 \in Q$ is start state
- $F \subseteq Q$ is set of accept states

26

PDA computation

M must start in ${\bf q}_0$ with empty stack M must move according to transition function To accept string, M must be at accept state at end of input

Start stack with \$. If you see \$ at top of stack, it is empty

27

Understanding transition δ

 $a, b \rightarrow c$ means:

- when you read a from tape and b is on top of stack
- replace b with c on top of stack
- a, b, or c can be ε
- \bullet If a is ε then change stack without reading a symbol
- \bullet If b is ε then push new symbol c without popping b
- If c is ε then no new symbol pushed, only pop b

PDA to accept 0ⁿ1ⁿ

M1 is $(Q, \Sigma, \Gamma, \delta, q_0, F)$

- $Q = \{q_1, q_2, q_3, q_4\} \ \Sigma = \{0,1\}$
- $\Gamma = \{0, \$\}$

 $F = \{q_1, q_4\}$

20

PDA to accept {ww^R}

Power of non-determinism:

• At start, don't know where string w ends

Theorem: A language is context free if and only if some PDA recognizes it

Let's prove: If a language L is CFL, some PDA recognizes it

Idea: Show how CFG can define a PDA

- Stack has set of terminals/variables to compare with input
- Place proper terminal/variable pattern onto stack based on rules
- Non-determinism: Clone your machine, following different branches of rules

34

CFG -> PDA

- If top of stack is variable, sub one right-hand rule for the variable
- If top of stack is terminal, keep going iff terminal matches input
- If top of stack is \$, accept!

35

Example 2.25 in textbook $S \rightarrow aTb \mid b$ $T \rightarrow Ta \mid \varepsilon$ $\varepsilon, \varepsilon \rightarrow S$ $\varepsilon, S \rightarrow b$ $\varepsilon, T \rightarrow a$ $\varepsilon, S \rightarrow b$ $\varepsilon, T \rightarrow \varepsilon$ $\varepsilon, T \rightarrow \varepsilon$ $a, a \rightarrow \varepsilon$ $b, b \rightarrow \varepsilon$

Regular languages vs. CFLs

- CFGs define CFLs
- PDAs recognize CFLs and Regular languages
- FSAs recognize Regular languages, but **not** CFLs
- CFLs and Regular languages not equivalent

Non Context Free Languages

Languages recognized by PDAs

- L={ww^R}
- L= $\{a^nb^n \mid n \ge 0\}$

Languages not recognized by PDAs

- L={ww}
- L= $\{a^nb^nc^n \mid n\geq 0\}$

В

Proving non context free – NEW pumping lemma!

Every string in CFL A with length greater than or equal to the pumping length p can be "pumped"

Every string $w \in A(|w| \ge p)$ can be written as uvxyz where

- 1. For each $i \ge 0$, $uv^i xy^i z \in A$
- 2. |vy| > 0
- 3. $|vxy| \le p$

39

Regular language PUMPING: Proof idea

If |s| < p, trivially true

If $|s| \ge p$, consider the states the FSA goes through

- Since there are only p states, |s|>p, one state must be repeated
- Pigeonhole principle: There must be a cycle

Prove $F=\{ww \mid w=(0 \cup 1)^*\}$ not CFL

Try a sample string $s=\{0^p10^p1\}$ |s|>p

- Can we define uvxyz=s so uvixyiz∈F?
- Yes: $u=0^{p-1}$, v=0, x=1, y=0, $z=0^{p-1}1$

Try another sample string $s=\{0^p1^p0^p1^p\}$

- Can we define uvxyz=s so uvixyiz∈F?
- No:
 - If vxy is in first w, pumping will make increase 1's and/or 0's in first w but not in second
 - If vxy straddles the middle, vxy will either increase 1's for first w and 0's for second w, or will break the 0ⁿ1ⁿ pattern