10/18/2017

CISC 4090
Theory of Computation

Context-Free Languages and
Push Down Automata
Professor Daniel Leeds

dleeds@fordham.edu
JMH 332

Languages: Regular and Beyond

Regular:

* Captured by Regular Operations (aUb)-c*-(dUe)

* Recognized by Finite State Machines

Context Free Grammars:
*Human language
* Parsing of computer language

An example Context-Free Grammar

Grammar G1 Example strings generated:
A - 0A1 #, O#1, 00#11, 000#111, ...
A-B
B # L(G1) = {o"#1" | n>0}

Variables: A, B; Terminals: 0, 1, #
One start variable: A

Substitution rules/productions
* Variable -> Variables, Terminals

Example English Grammar

Sentence -> NounPhrase VerbPhrase
NounPhrase -> Article NounSub
NounSub -> Noun | Adjective NounSub
VerbPhrase -> Verb | Verb NounPhrase
Noun -> Girl | Boy | Duck | Ball

Article ->The | A

Verb -> Throws | Sings

Example 1:
S->NP VP
->ANSV
->ANV
->The Boy Sings

Example 2:

S->NP VP
->ANSV
>ANV
-> A Duck Throws

10/18/2017

Formal CFG Definition

A CFG is a 4-tuple (V,X,R,S)
*V is finite set of variables
X finite set of terminals

* R finite set of rules

S € V start variable

YetaAnother example

G3 = ({S},{a,b},R,S)
R: S—aSb|SS |«

Example strings generated:

L(G1) ={

Example rule expansion:

Another example S->asb S->5S
aaShb aSb aSb
G3 = ({S},{a,b},R,S) aaebb aeb aaSbb
R: S—>aSb|SS|¢ aabb aeb aasbb
abaabb

Example strings generated:
€, ab, abab, aabb, aaabbbab,
ababababab, abaaabbb, ...

L(G3) ={a’s & b’s; each a is followed by a matching b, every
b matches exactly one corresponding preceding a}
(like parenthesis matching)

Another example
G4 = ({A,B,C},{a,b,c},R,A)
R: A-aA|BC]|e
B—-Bb|C
C-ocle

Example strings generated: €, aaa, cbbc, aacc

L(G4) = {Hard to describe... }

10/18/2017

Designing CFGs

Creativity required

Example: express as CFG

* If CFL is union of simpler CFL, design grammar for simpler
ones (G1, G2, G3), then combine: S->G1 | G2 | G3

* If language is regular, can make CFG mimic DFA

Qo -> 10~1
Q, ->0Q, | 1Q,
Q,->¢

Designing CFGs

Creativity required Chomsky Normal Form

« If language is regular, can make CFG mimic DFA CFG is in Chomsky normal form if every rule takes form:
Match each state with a single corresponding variable A - BC
Q={qg,---,d,} V={Ry, .., R,} A-a
Start state g, corresponds to state variable S -> R, *B and C may not be the start variables
Replace transition function with Production rule « The start variable may transition to &
§(qi, @) = q; R; - aR;
Accept state q, : transition to € Ry — ¢

Any CFL can be generated by CFG in Chomsky Normal Form

10/18/2017

) . . Step 2: Remove ¢,
Converting to Chomsky Normal Form Conversion practice So— S

Step 1: S,->S,

Non-normal form: S - aSa|bX|b
* So = S where S was original start variable S - aSa|bX So—= S X = Ycc
S = aSa|bX
*Remove 4 — ¢ X = Ycc|e Y - d|c
X > Yccle
* Shortcut all unit rules Y = d|c Y - d|)
GivenA — Band B - u,add 4 - u ¢ Step 3: Use unit rules,
So = aSa|bX|b
* Replace variable-terminal rules with variable-variable rules
Given A —» Bc,add U; = ¢ and change Ato A —» BU, § - aSalbX|b
X —>Ycc
* Replace rules A = uyu,usz ... up with: Y > d|c
A - ulq, Ay > Uy, Ay o UuzAs, o, Ay & U U .
Conversion practice Step 5: Reduce multi-variable o
] So = AN|BX|b Amblgwty—examples
Step 4: Replace terminals, S — ANIBX|b
So — ASA|BX|b |BX] . st i
rammar may generate a string in multiple ways
Sten 3. Use unit rules. 5~ ASAIBXID X";M & Ve & ple Way
ep 5: Use unit rules, Y - d|c
S, = aSa|bX|b X-vee A>a Math example:
S - aSa|bX|b Y = dfc Bob Expr — Expr + Expr | Expr X Expr | Expr | a
A—-a
X —>Ycc B—>b C-c English example:
Y - dfc C-c N —SA the girl touches the boy with the flower
M- CC

10/18/2017

Ambiguity — definitions

A grammar generates a string ambiguously if there are two or

more different parse trees

Definitions:

* Leftmost derivation: at each step the leftmost remaining variable

is replaced

* wis derived ambiguously in CFG G if there exist more than one

leftmost derivations

Conversion practice

Step2: Replace terminals

Step 1: Replace unit S —» AA|BXC
Non-normal form: rules X - XC|YCCla
S - aalbXc S = aalbXc Y > YCCla
X - Xc|Y X - Xc|Ycc|a A-a
Y - Yec|a Y - Ycc|a B—b
C-c

Conversion practice
Step2: Replace terminals
S — AA|BXC
X > XC|YCCla
Y - YCCla
A-a
B-b
C-c

Step 3: Reduce multi-var
S — AA|BN
X - XC|YM|a
Y > YM]|a
A—-a
B—-b
C-c
N - XC
M- CC

Push down automata

FSA augmented with memory

Equivalent to CFG if use non-determinism

control | &

finite

®

state

Finite control: transition function

Tape:
Stack:

holds input string

Can write to/read from stack

input tape

Input is Last In First Out (“LIFO”)

10/18/2017

PDA and Language O"1"

Read symbol from input, push each 0 onto stack
As soon as see 1's, start popping 0 for each 1 seen
* If finish reading and stack empty, accept

* If stack is empty and 1’s remain, reject

* If inputs finished but stack still has 0’s, reject

* In O appears on input, reject

Definition of PDA

APDA s a 6-tuple (Q,Z,T, 8,qq, F) whereQ, X, T, and F
are finite sets

* Qs sets of states

* X is the input alphabet

 ['is the stack alphabet

*8:Q x Xe x I'e > P(Q X I'e) is transition function
* (o € Qs start state

*F C Qs set of accept states

PDA computation

M must start in g, with empty stack
M must move according to transition function
To accept string, M must be at accept state at end of input

Start stack with S. If you see S at top of stack, it is empty

Understanding transition &

a,b — ¢ means:
* when you read a from tape and b is on top of stack
* replace b with c on top of stack

a,b,orccanbec

* If a is € then change stack without reading a symbol
* If b is € then push new symbol ¢ without popping b
* If cis € then no new symbol pushed, only pop b

10/18/2017

nin
PDA to accept 0"1" PDA to accept 0"1

0,e—-0 1,0 - ¢

M1is (Q,Z,T,8,q0 F)
*Q =1{q1,92,q3, 9} Z={0,1}
T ={0,%} F=1{q1,q4}

0,e—-0 1,0 - ¢

—> —[0 |— —>
0 0 0
s 1| S S S s 1|
PDA to accept {wwR} PDA to accept a'bick, i=j or j=k
Power of non-determinism: Power of non-determinism:
* At start, don’t know where string w ends * At start, don’t know if i=j or j=k esa ba-e cess

0,e>0
1l,e->1

0,e-0 00—«
l,e->1 1,1-¢

10/18/2017

Theorem: A language is context free if and
only if some PDA recognizes it

Let’s prove: If a language L is CFL, some PDA recognizes it

Idea: Show how CFG can define a PDA
* Stack has set of terminals/variables to compare with input
* Place proper terminal/variable pattern onto stack based on rules

* Non-determinism: Clone your machine, following different branches
of rules

CFG -> PDA

* If top of stack is variable, sub one right-hand rule for the variable
* If top of stack is terminal, keep going iff terminal matches input
* If top of stack is $, accept!

Example 2.25 in textbook S->aTb | b
T->Ta| ¢

Regular languages vs. CFLs

* CFGs define CFLs
* PDAs recognize CFLs and Regular languages
* FSAs recognize Regular languages, but not CFLs

* CFLs and Regular languages not equivalent

10/18/2017

Non Context Free Languages Proving non context free — NEW pumping lemmal
Languages recognized by PDAs Every string in CFL A with length greater than or equal to the
o L=fwwR} pumping length p can be “pumped”
* L={a"" | n=0} Every string w € A (|w|=p) can be written as uvxyz where
: igyi
Languages not recognized by PDAs 1. Foreachi =0, uvixy'z € A
o L={ww} 2. |vy| >0
s L={a"b"c" | >0} 3 |vxyl <p
- 1
173

» ERi

Regular language PUMPING: Proof idea CFL pumping: Proof idea

Pigeonhole idea: Given a long enough string,

If |s| < p, trivially true !]
some variable will need to be repeated

If |s| = p, consider the states the FSA goes through

* Since there are only p states, |s|>p, one state must be
repeated

* Pigeonhole principle: There must be a cycle

Example Grammar: S -> uRz
R->x | vRy

Prove F={ww | w=(0 U 1)*} not CFL
Try a sample string s={0P10P1} |s|>p
* Can we define uvxyz=s so uvixy'zeF ?
* Yes: u=0°1, v=0, x=1, y=0, z=0F11

Try another sample string s={0P1P0P1r}
* Can we define uvxyz=s so uvixy'zeF ?
* No:
* If vxy is in first w, pumping will make increase 1’s and/or 0’s in first w
but not in second
* If vxy straddles the middle, vxy will either increase 1’s for first w and 0’s
for second w, or will break the 0"1" pattern

10/18/2017

10

