CISC 4090
Theory of Computation
Context-Free Languages and Push Down Automata

Professor Daniel Leeds dleeds@fordham.edu

JMH 332

An example Context-Free Grammar

Grammar G1	Example strings generated:
$\mathrm{A} \rightarrow 0 \mathrm{~A} 1$	\#, 0\#1, 00\#11, 000\#111, ...
$A \rightarrow B$	
$B \rightarrow$ \#	$L(G 1)=\left\{0^{n} \# 1^{n} \mid n \geq 0\right\}$

Variables: A, B; Terminals: 0, 1, \#
One start variable: A
Substitution rules/productions

- Variable -> Variables, Terminals

Languages: Regular and Beyond
Regular:

- Captured by Regular Operations ($\mathrm{a} \cup \mathrm{b}$) $\cdot \mathrm{c}^{*} \cdot(\mathrm{~d} \cup \mathrm{e})$
- Recognized by Finite State Machines

Context Free Grammars:

- Human language
- Parsing of computer language

Formal CFG Definition

A CFG is a 4-tuple (V, Σ, R, S)

-V is finite set of variables

YetaAnother example

$\mathrm{G} 3=(\{\mathrm{S}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{R}, \mathrm{S})$

- Σ finite set of terminals

R: $S \rightarrow a S b|S S| \varepsilon$

- R finite set of rules
- $S \in V$ start variable

$$
\begin{aligned}
& \text { Example strings generated: } \\
& \text { L(G1) }=\{
\end{aligned}
$$

Example rule expansion:	
S -> aSb	$\mathrm{S}->\mathrm{SS}$
aaSbb	aSb aSb aacbb aabb
	acb aaSbb arb aacbb abaabb

> Another example $\begin{aligned} \mathrm{G} 4= & (\{\mathrm{A}, \mathrm{B}, \mathrm{C}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{R}, \mathrm{A}) \\ \mathrm{R}: \quad \mathrm{A} & \rightarrow \mathrm{aA}|\mathrm{BC}| \varepsilon \\ \mathrm{B} & \rightarrow \mathrm{Bb} \mid \mathrm{C} \\ \mathrm{C} & \rightarrow \mathrm{c} \mid \varepsilon\end{aligned}$

Example strings generated:
ε, ab, abab, aabb, aaabbbab,
ababababab, abaaabbb, ...
Example strings generated: ε, aaa, cbbc, aacc
$L(G 3)=\{a \prime s$ \& b's; each a is followed by a matching b, every b matches exactly one corresponding preceding a\}
(like parenthesis matching)

$$
L(G 4)=\{\text { Hard to describe... }\}
$$

Designing CFGs

Creativity required

- If CFL is union of simpler CFL, design grammar for simpler ones (G1, G2, G3), then combine: S-> G1 | G2 | G3
- If language is regular, can make CFG mimic DFA

Example: express as CFG

$Q_{0}>1 Q_{1}$
$\mathrm{Q}_{1} \rightarrow 0 \mathrm{Q}_{1} \mid 1 \mathrm{Q}_{2}$
$\mathrm{Q}_{2} \rightarrow \varepsilon$

Designing CFGs

Creativity required

- If language is regular, can make CFG mimic DFA

Match each state with a single corresponding variable

$$
Q=\left\{q_{0}, \ldots, q_{n}\right\} \quad V=\left\{R_{0}, \ldots, R_{n}\right\}
$$

Start state q_{0} corresponds to state variable $S->R_{0}$
Replace transition function with Production rule

$$
\delta\left(q_{i}, a\right)=q_{j} \quad R_{i} \rightarrow a R_{j}
$$

Accept state q_{k} : transition to $\varepsilon \quad R_{k} \rightarrow \varepsilon$

Chomsky Normal Form

CFG is in Chomsky normal form if every rule takes form:

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{BC} \\
& \mathrm{~A} \rightarrow \mathrm{a}
\end{aligned}
$$

- B and C may not be the start variables
- The start variable may transition to ε

Any CFL can be generated by CFG in Chomsky Normal Form

Converting to Chomsky Normal Form

- $S_{0} \rightarrow S$ where S was original start variable
- Remove $A \rightarrow \varepsilon$
- Shortcut all unit rules

Given $A \rightarrow B$ and $B \rightarrow u$, add $A \rightarrow u$

- Replace variable-terminal rules with variable-variable rules Given $A \rightarrow B \mathrm{c}$, add $U_{C} \rightarrow c$ and change A to $A \rightarrow B U_{C}$
- Replace rules $A \rightarrow u_{1} u_{2} u_{3} \ldots u_{k}$ with:

$$
A \rightarrow u_{1} A_{1}, A_{1} \rightarrow u_{2} A_{2}, A_{2} \rightarrow u_{3} A_{3}, \ldots, A_{k-2} \rightarrow u_{k-1} u_{k}
$$

Conversion practice	Step 2: Remove ε,	
Non-normal form:	Step 1: $S_{0}->S$,	$S \rightarrow S$
$S \rightarrow a S a \mid b X$	$S_{0} \rightarrow S$	$S \rightarrow a S a\|b X\| b$
$X \rightarrow Y c c \mid \varepsilon$	$S \rightarrow a S a \mid b X$	$X \rightarrow Y c c$
$Y \rightarrow d \mid c$	$X \rightarrow Y c c \mid \varepsilon$	$Y \rightarrow d \mid c$
	$Y \rightarrow d \mid c$	Step 3: Use unit rules,
		$S_{0} \rightarrow a S a\|b X\| b$
		$S \rightarrow a S a\|b X\| b$
	$X \rightarrow Y c c$	
		$Y \rightarrow d \mid c$

Ambiguity - examples

A grammar may generate a string in multiple ways
Math example:
Expr \rightarrow Expr + Expr $|\operatorname{Expr} \times \operatorname{Expr}| \operatorname{Expr} \mid \mathrm{a}$
English example:
the girl touches the boy with the flower

Ambiguity - definitions

A grammar generates a string ambiguously if there are two or more different parse trees

Definitions:

- Leftmost derivation: at each step the leftmost remaining variable is replaced
- w is derived ambiguously in CFG G if there exist more than one leftmost derivations

Conversion practice

Step2: Replace terminals
Step 3: Reduce multi-var

$$
\begin{aligned}
& S \rightarrow A A \mid B X C \\
& X \rightarrow X C|Y C C| a \\
& Y \rightarrow Y C C \mid a \\
& A \rightarrow a \\
& B \rightarrow b \\
& C \rightarrow C
\end{aligned}
$$

$$
\begin{aligned}
& S \rightarrow A A \mid B N \\
& X \rightarrow X C|Y M| a \\
& Y \rightarrow Y M \mid a \\
& A \rightarrow a \\
& B \rightarrow b \\
& C \rightarrow c \\
& N \rightarrow X C \\
& M \rightarrow C C
\end{aligned}
$$

Push down automata

FSA augmented with memory Equivalent to CFG if use non-determinism

Finite control: transition function

Tape: holds input string
Stack: Can write to/read from stack
Input is Last In First Out ("LIFO")

PDA and Language $0^{n 1} 1^{n}$

Read symbol from input, push each 0 onto stack As soon as see 1 's, start popping 0 for each 1 seen

- If finish reading and stack empty, accept
- If stack is empty and 1's remain, reject
- If inputs finished but stack still has 0's, reject
- In 0 appears on input, reject

Definition of PDA

A PDA is a 6-tuple ($\left.Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ where Q, Σ, Γ, and F are finite sets

- \mathbf{Q} is sets of states
- Σ is the input alphabet
- Γ is the stack alphabet
- $\delta: \mathrm{Q} \times \Sigma \varepsilon \times \Gamma \varepsilon \rightarrow \mathrm{P}(\mathrm{Q} \times \Gamma \varepsilon)$ is transition function
- $\mathrm{q}_{0} \in \mathrm{Q}$ is start state
- $\mathrm{F} \subseteq \mathrm{Q}$ is set of accept states

PDA computation

M must start in q_{0} with empty stack
M must move according to transition function
To accept string, M must be at accept state at end of input

Start stack with \$. If you see \$ at top of stack, it is empty

Understanding transition δ

$a, b \rightarrow c$ means:

- when you read a from tape and b is on top of stack
- replace b with c on top of stack
a, b, or c can be ε
- If a is ε then change stack without reading a symbol
- If b is ε then push new symbol c without popping b
- If c is ε then no new symbol pushed, only pop b

PDA to accept $\left\{w^{R}\right\}$

PDA to accept $a^{i} b^{j} c^{k}, i=j$ or $j=k$

Power of non-determinism:

- At start, don't know where string w ends

Theorem: A language is context free if and only if some PDA recognizes it
Let's prove: If a language L is $C F L$, some PDA recognizes it
CFG -> PDA

- If top of stack is variable, sub one right-hand rule for the variable
- If top of stack is terminal, keep going iff terminal matches input

Idea: Show how CFG can define a PDA

- If top of stack is $\$$, accept!
- Stack has set of terminals/variables to compare with input
- Place proper terminal/variable pattern onto stack based on rules
- Non-determinism: Clone your machine, following different branches of rules

Regular languages vs. CFLs

- CFGs define CFLs
- PDAs recognize CFLs and Regular languages
- FSAs recognize Regular languages, but not CFLs
- CFLs and Regular languages not equivalent

Non Context Free Languages

Languages recognized by PDAs

- L=\{ww $\left.{ }^{\text {R }}\right\}$
- $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

Languages not recognized by PDAs

- L=\{ww\}
- $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Proving non context free - NEW pumping lemma!

Every string in CFL A with length greater than or equal to the pumping length p can be "pumped"

Every string $w \in A(|w| \geq p)$ can be written as uvxyz where

1. For each $i \geq 0, u v^{i} x y^{i} z \in A$
2. $|\mathrm{vy}|>0$
3. $|v x y| \leq p$

Regular language PUMPING: Proof idea

If $|\mathrm{s}|<\mathrm{p}$, trivially true
If $|s| \geq p$, consider the states the FSA goes through

- Since there are only p states, $|s|>p$, one state must be repeated
- Pigeonhole principle: There must be a cycle

CFL pumping: Proof idea

Pigeonhole idea: Given a long enough string, some variable will need to be repeated

Example Grammar: S -> uRz
R -> $x \mid v R y$

Prove $F=\left\{w w \mid w=(0 \cup 1)^{*}\right\}$ not CFL
Try a sample string $s=\left\{0^{p} 10^{p} 1\right\} \quad|s|>p$

- Can we define uvxyz=s so uvixyizeF ?
- Yes: $u=0^{p-1}, v=0, x=1, y=0, z=0^{p-1} 1$

Try another sample string $s=\left\{0^{p} 1^{p} 0^{p} 1^{p}\right\}$

- Can we define uvxyz=s so uvi'xy'zEF ?
- No:
- If vxy is in first w, pumping will make increase 1's and/or 0's in first w but not in second
- If vxy straddles the middle, vxy will either increase 1's for first w and 0's for second w, or will break the $0^{n} 1^{n}$ pattern

