CISC 4090 Theory of Computation

Turing machines

Professor Daniel Leeds dleeds@fordham.edu JMH 332 Alan Turing (1912-1954)

Father of Theoretical Computer Science Key figure in Artificial Intelligence Codebreaker for Britain in World War I

2

Turing machine

Simple theoretical machine

Can do anything a real computer can do!

Turing machine: the formal definition $\begin{tabular}{ll} \begin{tabular}{ll} Turing machine: the formal definition \\ \begin{tabular}{ll} 7 tuple: $(Q,\Sigma,\Gamma,\delta,q_0,q_{accept},q_{reject})$ \\ Q is set of states \\ \begin{tabular}{ll} \Sigma \end{tabular} is input alphabet \\ \begin{tabular}{ll} \Gamma \end{tabular} is input alphabet; blank & Γ and $\Sigma \in \Gamma$ \\ \begin{tabular}{ll} \delta : Q \times \Gamma \to Q \times \Gamma \times \{L,R\} \end{tabular} transition function \\ Start, accept, and reject state: $q_0, q_{accept}, q_{reject} $ \end{tabular}$


```
Strategy: B={w#w|w \in \{0,1\}^*}

Find left-most 0-or-1 character in first word

If match left-most character in second word, X out both chars

Else reject

If no characters left, accept

\begin{array}{c}
\sim \sim 0.11000 \# 0.11000 \sim \sim \sim \\
\sim \sim \times 11000 \# \times 11000 \sim \sim \sim \\
\sim \sim \times \times 11000 \# \times \times 1000 \sim \sim \sim
\end{array}
```


Strategy: $B=\{w\#w \mid w \in \{0,1\}^*\}$ Typical big-picture solution

Find left-most 0-or-1 character in first word

If match left-most character in second word, X out both chars

Else reject

If no characters left, accept $\begin{array}{c}
\sim \sim 0.11000 \# 0.11000 \sim \sim \sim \\
\sim \sim \times 11000 \# \times 11000 \sim \sim \sim \\
\sim \sim \times \times 1000 \# \times 1000 \sim \sim \sim
\end{array}$

Strategy: $B=\{w\#w \mid w \in \{0,1\}^*\}$ Find left-most 0-or-1 character in first word

If match left-most character in second word, X out both chars

Else reject

If no characters left, accept

Analysis: We will always get an answer (accept or reject), because problem gets smaller after each step