“Turing recognizable” vs. “Decidable”

L(M) – “language **recognized** by M” is set of strings M accepts

Language is **Turing recognizable** if some Turing machine recognizes it
 - Also called “recursively enumerable”

Machine that halts on all inputs is a **decider**. A decider that recognizes language L is said to **decide** language L

Language is **Turing decidable**, or just **decidable**, if some Turing machine decides it

Example non-halting machine

Determining if a machine halts can be hard!

Turing machine structure

Infinite tape

At each step
 - Must move left/right on tape
 - Can change state
 - Can change tape content

When reaches accept or reject state, terminates and outputs “accept” or “reject”

Can loop forever
Turing Machine for \(C = \{2^n \mid n \geq 0\} \)

Recursive division by 2

Sweep left to right across tape, cross off every-other 0

If

- Exactly one 0: accept
- Odd number of 0s: reject
- Even number of 0s, return to front

Alternating 0s in action:

TM M2 “decides” language C

If you land on a location and want to cross it out, but it is a ~, you crossed out an even number of 0s – do another loop!

If you land on a location and want to skip over it, but it is a ~, you crossed out an odd number of 0s – reject!

(Incomplete)

State machine for alternating 0 removal

Language \(D = \{a^i b^j c^k \mid k = ixj \text{ and } i,j,k > 0\} \)

Multiplication on a Turing Machine!

Consider \(2 \times 3 = 6 \)

\[\sim \sim a \; a \; b \; b \; b \; c \; c \; c \; c \; c \; c \sim \sim \]
TM M3 to decide D={ab^ic^k | k=ixj and i,j,k>0}

Scan string to confirm form is a'b'c'
• if so: go back to front; if not: reject
X out first a, for each b, x off that b and x off one c
• If run out of c's but b's left: reject
Restore crossed out b's, repeat b—c loop for next a
• If all a's gone, check if any c's left
 • If c's left: reject; if no c's left: accept

“Multiply” in action:

Transducers: generating language
So far our machines accept/reject input

Transduction: Computers transform from input to output
• New TM: given i a's and j b's on tape, print out ixj c's

TM M3 “decides” language D

Symbol X is an a or c that is gone for good
Symbol y is a b temporarily out of service as you go through all the other b's

Transducer: Write c^k , k=ixj, given i a’s, j b’s,

Scan string to confirm form is a'b'
• if so: go back to front; if not: reject
X out first a, for each b, Y off that b and add c to the end
Restore crossed out b's, repeat b—c loop for next a
• If all a's gone, accept
TM 4: Element distinctiveness

Given a list of strings over \{0,1\}, separated by #, accept if all strings are different:

Example: 01101#1011#00010

TM 4 solution

1. Place mark on top of left-most symbol. If it is blank: accept; if it is #: continue, otherwise: reject
2. Scan right to next # and place mark on it. If none encountered and reach blank: accept
3. Zig-zag to compare strings to right of each marked #
4. Move right-most marked # to the right. If no more #: move left-most # to its right and the right-most # to the right of the new first marked #. If no # available for second marked #: accept
5. Go to step 3

Decidability

How do we know decidable?

• Simplify problem at each step toward goal
• Can prove formally – number of remaining symbols at each step

Showing language is Turing recognizable but not decidable is harder

Many equivalent variants of TM

• TM that can “stay put” on tape for a given transition
• TM with multiple tapes
• TM with non-deterministic transitions

Can select convenient alternative for current problem
MultiTape TM

- Each tape has own ReadWrite Head
- Initially tape 1 has input string, all other tapes blank
- Transition does read/write on all heads at once

Equivalence of SingleTape and MultiTape TM

Convert k tape TM M to single tape TM S
- Contents of M’s tapes separated by # on S’s tape
- Mark current location on each tape
- Read stage: sweep through all k tapes to check input
- Write stage: sweep through all k tapes to write output and update marker (read head) locations
- Head location out of range?
 - Add new position to relevant tape, shift all other characters to right

Equivalence of Deterministic and Nondeterministic TMs

- Try all possible non-deterministic branches – breadth first search
- DTM accepts if NTM accepts
- Can use three tapes: 1 for input, 1 for current branch, 1 to track tree position

Enumerators

Enumerator E is TM with printer attached
- TM can send strings to be output by printer
- Input tape starts blank
- Language enumerated by E is collection of strings printed
- E may print infinitely

Theorem: A language is Turing-recognizable iff some enumerator enumerates it
Proof of enumerator equivalence

If enumerator E enumerates language A, TM M recognizes it
- For every w generated by E, M runs E and checks if w in output

If TM M recognizes language A, can construct enumerator E for A:
- s_1, s_2, s_3, \ldots be list of all possible strings
- For $i = 1, 2, \ldots$
 - Run M for i steps on s_1, s_2, \ldots, s_i
 - If string accepted, print it

Common themes in TM variants

- Unlimited access to unlimited memory
- Finite work performed at each step

Note, all programming languages are equivalent
- Can write compiler for C++ in Java

An Algorithm

is a collection of simple instructions for carrying out some task

Hilbert’s Problems

In 1900, David Hilbert proposed 23 mathematical problems

Problem #10
- Devise algorithm to determine if a polynomial has an integral root.
- Example: $6x^3yz^2 + 3xy^2 - x^3 - 10$ has root $x=5, y=3, z=0$

General algorithm for Problem 10 does not exist!
Church-Turing Thesis

• Intuition of thesis: algorithm == corresponding Turing machine

• Algorithm described by TM also can be describe by λ–calculus (devised by Alonzo Church)

Hilbert’s 10th problem

Is language D decidable, where \(D=\{p \mid p \text{ is polynomial with integral root} \} \)

Devise procedure:
• Try all ints, starting at 0: \(x=0, 1, -1, 2, -2, 3, -3, \ldots \)
• You may never terminate – so not decidable

Exception: univariate case for root is decidable

Levels of description

For FA and PDA
• Formal or informal description of machine operation

For TM
• Formal or informal description of machine operation
• OR just describe algorithm
 • Assume TM confirms input follows proper tape string format

Graph connectivity problem

Let \(A \) be all strings representing graphs that are connected (any node can be reached by any other)
\(A=\{<G> \mid G \text{ is connected undirected graph} \} \)
Describe TM \(M \) to decide language

Algorithm:
1. Select and mark first node of \(G \)
2. Repeat below until no new nodes marked:
 • For each node in \(G \), mark if it is attached to already-marked node
3. Scan all nodes of \(G \) – if all marked, accept; else, reject