
1. Provide two valid strings in the languages described by each of the following 
regular expressions, with alphabet Σ = {0,1,2}. 
 

(a) 0(010)∗1 
 
 
 

(b) (21 ∪ 10)∗0012∗ 
 

 

(c) 1∗(200)∗ ∪ 100∗01 
Examples: 1, 200, 111, 11200200, 111200200200, 1001, 1000001, 10000001 

 
 
2. For each of the following DFAs, provide a Regular Expression to describe the 
language, with alphabet Σ = {𝑎, 𝑏}. 
 

(a) RED QUESTION 

 
 
 
 

(b) BLUE QUESTION 

 
 
 



 
(c) GREEN QUESTION 

 
b*abb*(abb*)* 
 
 
3. Create a DFA to accept each of the following languages. 
A={w | last number in w is even} ,  given alphabet Σ = {0,1,2,3} 

 
 
 
 
B={w | at least three symbols in w} ,  given alphabet Σ = {𝑎, 𝑏, 𝑐} 
 
 
C={w | sum of digits in w equals 2} ,  given alphabet Σ = {0,1,2} 
 
 
 
4. Convert each of the following NFAs to a DFA, with alphabet Σ = {𝑎, 𝑏}. 
 

(a) RED QUESTION 

 
 



 
 
 

(b) GREEN QUESTION 

 

 

 

(c) BLUE QUESTION 

 
 
 
 
5. Prove the following languages are not regular. 

(a) A={bk!a | k>0} 
 
 

(b) B={0k12k0k | k>0} 
 
 
7. Provide two valid strings for each of the following CFGs. 



(a) G1: 
S -> A | B 
A -> DC | C 
B -> EF | F 
C -> dog | cat | mouse 
D -> big | small | red | white 
E -> quickly | slowly 
F -> runs | swims | jumps | barks 
 

A -> DC -> big mouse 
A -> C -> cat 
B -> EF -> slowly runs 
F -> barks 
 
 
 

(b) G2: 
S -> BA | B 
B -> xBx | 𝜀 
A -> c | de | f 

 
  
 
 

(c) G3: 
S -> CaC | C 
C -> yCy | y 

 
 
8. Convert the following CFGs to CNF (same as Q7). 

(a) G1: (for G1, each word is a terminal)  
S -> A | B 
A -> DC | C 
B -> EF | F 
C -> dog | cat | mouse 
D -> big | small | red | white 
E -> quickly | slowly 



F -> runs | swims | jumps | barks 
 
 

(b) G2:  
S -> BA | B 
B -> xBx | 𝜀 
A -> c | de | f 

 
 S -> BA | A | B | 𝜀  Distribute 𝜀 
 B -> xBx | xx 
 A -> c | de | f 
 
 S -> BA | c | de | f | xBx | xx | 𝜀  Use single variable substitutious 
 B -> xBx | xx 
 A -> c | de | f 
 
 S -> BA | c | DE | f | XBX | XX | 𝜀 Substitute literals with variables 
 D -> d 
 E -> e 
 X -> x 
 B -> XBX | XX 
 A -> c | DE | f 
 
 S -> BA | c | DE | f | XQ | XX | 𝜺 
 Q -> BX 
 D -> d 
 E -> e 
 X -> x 
 B -> XQ | XX 
 A -> c | DE | f 
 
 

(c) G3: 
S -> CaC | C 
C -> yBy | y 

 
  



 
 
9. Express each of the following languages as a CFG.  

(a) A = {xky2kz} 
 
 

(b) B = {w | w is described by (ab)*ba } 
S -> Cba 
C -> abC | 𝜺 

 
 

(c) C = { 010k101k+2 | k >0 } 
 
 
 
10. Describe the PDA to accept each of the following languages (languages from 
Q9). 

(a) A = {xky2kz} 

 
 
 

(b) B = {w | w is described by (ab)*ba } 
 

 
 
 

(c) C = { 010k101k+2 | k >0 } 
 
 
 
 



 
 
 
 
11. What is the response of PDA P1 to each input: i.e., does it reach an accept 
state? 

 
 
 Input 1: bbaa 
  
 
 
 Input 2: aaa 
 Reaches accept. Gets to q2 state. 
 
 
 
 Input 3: abb 
 
 
 
 Input 4: aaaaabbba 
 Reaches accept! 3 a’s put on stack, popped with 3 b’s. 
 
 
 
 
 
 
 



 
 
12. Describe the configurations resulting from each of the input tapes specified 
below for the following Turing Machine. 

 
 

(a) aabb 
 
 

(b) abaaa 
 
 

(c) aaaba 
q0 aaaba 
q1 baaba 
q1 baaba 
q1 baaba 
q0 baaXa 
q1 baaXb~ 
q2 baaXb 
q2 baaXb 
accept    baaXb 
 
 
13. Express the following problems as languages. 
 



(a) Determine if two specified CFG’s accept complementary inputs – every 
accepted input for the first CFG is rejected by the second CFG and vice 
versa. 

 
 

(b) Determine if a specified DFA accepts a specified string repeated zero or 
more times. 

L = {<D,w> | L(D) = w*} 
 
 

(c) Determine if a specified Turing machine accepts the same language as a 
specified PDA. 

 
 
14. Prove the follow languages are decidable. 

(a) Determine if a specified DFA accepts a specified string repeated zero or 
more times. 

By construction: We can construct a DFA to accept a specified string once by 
defining a DFA with a single edge corresponding to each symbol in the string. 
To accept arbitrary numbers of times, we add a loop back from the final state 
to the first state. This construction takes finite time. 
We can test if any input DFA is equivalent to the constructed DFA. This 
problem is decidable through the language EQDFA. 

 
 

(b) Determine if a specified CFG is in Chomsky Normal Form. 
 
 
 

(c) Determine if a specified CFG does not accept a specified word. 
 
 
15. Provide a big-O and a little-o complexity for each function. 
 

(a) f(n) = 20 n log n + 5n + 2 
 
 



(b) f(n) = 30 n3 + 6 n5 + log n 
Smallest: O(n5); also O(n10), O(2n) 
Near-smallest: o(n5 log n) or o(n6) also, o(n20), o(2n) 

 
 

(c) f(n) = 5 n2 + n3 log n + 4n + 8 
 
 
 
16. Compute the complexity for each algorithm described below. 
 

(a) Algorithm 1: (State the complexity based on r and c) 
Start with a table of r rows and c columns 
1. Sum the elements in each row 

- Use a running sum with a loop across all columns 
2. Find the row with the maximum sum  

- Loop through all rows, saving biggest sum and its row in two separate 
variables  

 
 

(b) Algorithm 2: (State the complexity based on n) 
Start with a list of n elements 
1. While list is longer than 1 element long 

- Replace each pair of elements with the product of the two elements 
(elements 1 and 2 replaced by single product, elements 3 and 4 
replaced by single product, elements 5 and 6 replaced by single 
product, etc.) 

 
 
 
17. Determine if the following problems are in P and/or NP.  
 

(a) Given a directed graph and two nodes a and b, determine if there are at 
least two different paths to get from node a to node b. Paths are 
“different” if they differ by at least one edge. 

 



We established how to find a single path in polynomial time using edge 
labeling, starting at node a and attempting to arrive at node b. After 
completing the process once, we can repeat this process a second time, with a 
loop removing from the graph one of the edges from the first solution each 
time and checking whether a path still exists between a and b. This solution for 
each altered graph will be polynomial, and the number of edges removed will 
be O(m) in the number of edges in the graph m (and even O(n) in the number 
of nodes in the graph), so the resulting algorithm is polynomial. 
In the end, this problem is in P (which means it also is in NP). 

 
 

(b) In an undirected graph, determine if every node is attached to every other 
node. 

 
 
 

(c)  Determine if the language of a DFA is empty. 


