
11/13/2017

1

CISC 4090
Theory of Computation

Decidability

Professor Daniel Leeds

dleeds@fordham.edu

JMH 332

“Turing recognizable” vs. “Decidable”

Language is Turing recognizable if some Turing machine recognizes it

• Also called “recursively enumerable”

Machine that halts on all inputs is a decider. A decider that recognizes
language L is said to decide language L

Language is Turing decidable, or just decidable, if some Turing machine
decides it

2

Not all problems can be solved

•Good to know when you might not find an answer

•Get perspective on limits of computation

3

Decidable problems for regular languages

• Does DFA D accept string s?

• Is L(D) of DFA empty?

• Are two DFAs D1 and D2 equivalent?

Specify DFA on input TM,
determine control algorithm to run DFA specified on tape

4

11/13/2017

2

Arbitrary DFA D accepts string w

Language: ADFA={(D,w) | D is DFA that accepts w}

Theorem: ADFA is decidable

Proof idea:

• Define machine M that simulates D on w

• If simulation ends in an accept, accept; else, reject

Note: control states in M cannot be states in D

M needs to run arbitrary D

~StartQ#AcceptQ#𝛿#CurrentState#w~

5

ADFA decider Proof Outline

DFA D described as string: 5-tuple

Use marks on tape to track

• current state in simulated D

• current symbol read from w

Implement transition function of D for current D state and
input w

• D’s transition δ is different from TM M’s transition δ

6

Arbitrary DFA D accepts no strings

EDFA={ D | D is DFA with L(D)={} } is decidable language

Proof idea:

• Is there any way to reach accept from start?

• Think of graph-marking

Proof

• Mark start state of DFA D

• Repeat until no new states
• Mark any state that past-marked states transition to

• If an accept state is marked, REJECT; else, accept 7

Two DFAs are equivalent

EQDFA = {(A,B) | A and B are DFAs and L(A)=L(B)} is decidable language

Proof idea:

• Construct new DFA C from A and B; C accepts only strings accepted by
either A or B, but not both

• Check if C’s language is empty (last slide)

8

11/13/2017

3

Two DFAs are equivalent

EQDFA = {(A,B) | A and B are DFAs and L(A)=L(B)} is decidable language

Alternative proposals:

• Proposal 1: For machine A, start at start state and record path from
start to all possible accept states; do the same for B; check if bijection
between unique A and B paths – might work, but need to confirm
how this will deal with self loops

• Proposal 2: Create enumerator for machine A. Loop on i=1 to infinite,
print out strings in L(A) with length i and test if B accepts –
theoretically works, but takes infinite time for infinite words – will
never halt (this solution does not show decidability)

9

ACFG is decidable – Proof

For CFG G and string w, determine if G generates w

Idea 1: Simulate G to go through all derivations

• May never terminate

Idea 2: Note |w|=n; 2n-1 steps from CNF rules to each string
Produce all words of lengths n

• Breadth-first search of finite depth is fixed

10

BCFG is a decidable language

• For CFG G, determine if there is any terminal string generated by G

• Mark all variables that generate terminals

• Repeated loop:

• Mark all variables that have previously-marked variables on its rules
right sides

• If mark S, ACCEPT; otherwise reject S -> AB
A -> An | x
B -> yB | d

12

BCFG is a decidable language
• For CFG G, determine if there is any terminal string generated by G

Alternative solution:

• Breadth-first search of rules; block repeat-visits to a branch

• If you reach an all-terminal solution, accept

• If never reach all-terminal solution, reject

Are there a finite number of non-breadth-first traversals? Yes

Rule can lead to k possible variables: S-> ABACCD…E

Each of m variables in grammar can have p possible rules

Given no loops allowed, max # rule evals per variable in first rule is pm

Max bound on number of steps: p (pm)k … huge but finite

13

11/13/2017

4

EQCFG is not a decidable language

• Regular expressions closed under complement and
intersection

• CFLs not closed under complement and intersection

• We will prove non-decidable languages later

14

The Halting Problem

Key theorem to theory of computation
Addressing unsolvable problems

Unsolvable: Software verification

• For arbitrary computer program P and precise specification
of program’s behavior S, determine if P fulfills S

15

Halting Problem specified

ATM = {(M,w) | M is a TM and M accepts w}

• If M loops forever on w, our TM for ATM must reject w

• This problem is Turing recognizable, but not decidable!

16

Detour: Cantor diagonalization

Comparing sizes of two infinite sets

• What is larger: set of even positive integers or set of all strings
in (0U1)*

Diagonalization: two sets have same size if each element of set A
can be compared with one element of set B

From CISC 1400: Can you define bijection from set A to set B?

17

11/13/2017

5

Example pairing

N = {1,2,3,4,…} and E={2,4,6,8,…}

• N and E have “same size” because there exists bijection from
N to E

• f(x)=2x

Set is countable if either it is finite or if it has same size as N

18

Q is countable

1/1 1/2 1/3 1/4 1/5 1/6

2/1 2/2 2/3 2/4 2/5 2/6

3/1 3/2 3/3 3/4 3/5 3/6

4/1 4/2 4/3 4/4 4/5 4/6

5/1 5/2 5/3 5/4 5/5 5/6

6/1 6/2 6/3 6/4 6/5 6/6

Let Q = {m/n: m,n ∈ N}, positive rational numbers

Follow diagonal, skipping redundant values

19

Concatenating
infinite set of finite
lists produces
countable list

Take countable
steps along
diagonal line to
reach each number
in Q

20

1/1 1/2 1/3 1/4 1/5 1/6

2/1 2/2 2/3 2/4 2/5 2/6

3/1 3/2 3/3 3/4 3/5 3/6

4/1 4/2 4/3 4/4 4/5 4/6

5/1 5/2 5/3 5/4 5/5 5/6

6/1 6/2 6/3 6/4 6/5 6/6 20

Concatenating
infinite set of finite
lists produces
countable list

Take countable
steps along
diagonal line to
reach each number
in Q

Real numbers are uncountable

Real numbers have infinite number of decimal places

Proving uncountability

• Presume we have a list of n real numbers

• Generate new real number x not in current list
• Pick ith decimal value of x to be different from ith decimal value

of element i in list of real numbers

• At end, x will not be in list

R(1) 1.532532

R(2) 0.352144

R(3) 5.244525

R(4) 9.327431

R(5) 5.366324

R(6) 4.459322

⋮ ⋮

x 3.646311
21

11/13/2017

6

Uncountability implications

There are uncountably many languages

There are countably many Turing machines

Some languages are not Turing recognizable

22

“There are countably many Turing machines”

Each TM is captured by finite string <M>∈ Σ∗

• Σ∗ is countable – add number of strings of length 0, length 1,
length 2, … (like Q)

23

“There are uncountably many languages”

Represent L as binary sequence

• 1 for each accepted string, 0 for each reject string

• Infinite number of strings – infinite sequence of 0/1s

• Set of possible binary sequences is uncountable (like R)

24

“There are uncountably many languages”

Represent L as binary sequence

• 1 for each accepted string, 0 for each reject string

• Infinite number of strings – infinite sequence of 0/1s

• Set of possible binary sequences is uncountable (like R)

“Some languages are not Turing decidable”

Set of TMs is countable

Set of Languages is uncountable

Each TM has one language

Some languages not recognized by any TM

25

11/13/2017

7

Back to the Halting Problem

ATM={<M,w> | M is a TM and accepts w}

• Proof by contradiction – uses diagonalization

26

Contradiction

Assume ATM is decidable

H decides ATM

• Input <M,w> causes H to accept if M accepts w,
otherwise H rejects

Define a TM D that calls H on <M,<M>>, then outputs opposite
answer to H

• D rejects if M accepts <M>; D accepts if M does not accept <M>

Run D on itself

• D(<D>) = accept if D does not accept <D>; reject if D accepts <D>

Contradiction!
27

Diagonalization

28

<M1> <M2> <M3> <M4> … <D>

M1 Acc Rej Rej Acc … Acc

M2 Rej Rej Acc Rej … Rej

M3 Acc Rej Acc Acc … Acc

M4 Rej Acc Rej Acc … Rej

⋮ ⋮ ⋮ ⋮ ⋮

D Rej Acc Rej Rej … XX

Implications

ATM={(M,w) | M is a TM and M accepts W} is not decidable

Some algorithms are decidable

ATM is Turing recognizable – just simulate M on machine

29

11/13/2017

8

Co-Turing Recognizable

Language is co-Turing recognizable if it is the complement of a
Turing-recognizable language

Theorem: Language is decidable if it is Turing-recognizable and
co-Turing recognizable

Thus, for any undecidable language L, either L or L’ is not
Turing-recognizable

• Is ATM’ Turing-recognizable?

30

Reducibility

If A reduces to B, solution to B will solve A

Example: A: Navigate NYC B: Reading a map

If A reduces to B

• A is no harder than B

• A could be easier than B

31

Reduction and decidability

If A is reducable to B and B is decidable

• A is decidable

If A is reducible to B and A is undecidable

• B must be undecidable

32

HALTTM is undecidable

We can reduce ATM (TM accepts w) to HALTTM (TM halts on w)

ATM is undecidable, this HALTTM is undecidable

Proof by contradiction:

• Assume HALTTM is decidable – TM R

• Use R to construct TM S to decide ATM

• S definition:
• If R does not indicate halting for <M,w>, reject w
• If R does indicate halt, simulate M on w

33

