f1. Consider the state diagram for the following DFAs. For each, answer the following questions:
(1) What state is reached by the input: $\mathrm{w}=00110$?
(2) What is the transition function?
(3) What is the language recognized?

M1:

M2:

M3:

(1) q_{3} $q_{0}(0)->q_{2}(0)->q_{3}(1)->q_{3}(1)->q_{3}(0)->q_{3}$
(2)

	0	1
q_{0}	q_{2}	q_{1}
q_{1}	q_{2}	q_{1}
q_{2}	q_{3}	q_{3}
q_{3}	q_{3}	q_{3}

(3) L3 $=\{\mathbf{w} \mid$ contains exactly one 0 , followed by no other symbols $\} 1^{*} 0$
2. Define a machine to recognize the following languages in the alphabet $\Sigma=\{1,2,3\}$
(5 points)
L4=\{w | the product of input symbols is even\} E.g., 111->1x1x1=1 is odd-reject, $233->2 \times 3 \times 3=18$ is even-accept
Presuming initial running product is 1 :

(1U3)*2(1U2U3)*
L5=\{w | numbers entered in non-decreasing order\} Examples: 112223, 122333
L6=\{w | first two symbols are identical\} Examples: 001213, 333212, 3310013
3. Prove the following languages are regular, using the alphabet $\Sigma=\{a, b, c\}$:

L7=\{w | w contains an odd number of b's $\}$
L8=\{w | w contains the sequence bcb\} (Examples: aabbbcbb or ccbcba)
Prove this by showing an FSA that recognizes L8 or showing regular expression for L8
NFA:

RegExp: (aUbUc)"bcb(aUbUc)* or $\Sigma^{*} b c b \Sigma^{*}$
L9=\{w | w does not have three a's in a row\}
4. Consider the following NFAs. For each, answer:
(1) what state(s) will be reached by the input: 0011
(2) provide a regular expression to describe the recognized language
(3) For N11 and N12, convert NFA to DFA

N10:

N11:

N12:

(1) Enter \{\} state (exit all listed states for NFA)
(2) $1^{*} 0(01)^{*}$
(3)

5. For each regular expression using $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:
(1) Provide three example words.
(2) Convert these regular expressions to a DFA or NFA

L13=\{ab* $\left.{ }^{*} \mathbf{b a}^{*}\right\}$

L14 $=\left\{(\mathbf{a} \cup \mathbf{b}) \mathbf{b a}^{*}\right\}$
(1) Examples: ab, bb, aba, bba, abaaa, bbaa

$\mathrm{L} 15=\left\{(\mathbf{b b})^{*} \cup(\mathbf{a a})^{*}\right\}$
6. What is the minimum pumping length for each of these languages, showing these languages are regular? We use the alphabet $\Sigma=\{0,1,2\}$

L16=\{00 $(0 \cup 1) * 12\}$
L17 $=\left\{0(22)^{*} 10\right\}$
L18=\{111(202)*210\}
$\mathrm{p}=9$ smallest pumpable word: 111202210

If pumping length is $p=5$, how would you break up string w into x, y, and z for languages L below?

L19=\{ 20(11)* 001$\}, \quad \mathbf{w}=201111001$
$\mathrm{x}=20 \mathrm{y}=11 \mathrm{z}=11001$

L20=\{ (121)*001 \} w=121001
7. Consider the language $L 21=\left\{01(101)^{*} 11\right\}$, what is the error in each of the following "pumping lemma" arguments?

Argument 1: Let us take w=0111, $w \in \mathbf{L 2 1}$. We cannot divide $w=x y z$ such that $y^{i} z \in \operatorname{L21}, i \geq 0$. For example, if $x=0, y=11$, and $z=1, x^{2} z=011111 \notin \mathbf{L 2 1}$. Therefore, $\mathbf{L 2 1}$ is not regular.

Argument 2: Let us take $\mathbf{w = 0 1 1 0 1 1 0 1 1 1 , ~} \mathbf{w} \in \operatorname{L21}$. If we divide $\mathbf{w = x y z}$ as follows: $x=0110110, y=11, z=1$, we cannot repeat y such that $x y^{i} z \in L 21, i \geq 0$. For example, if $x y^{2} z=011011011111 \notin \mathbf{L} 21$. Therefore, $\mathbf{L 2 1}$ is not regular.
8. Prove these languages are not regular.

L24 $=\left\{0^{n} 1^{2 n} 0^{3 n} \mid n>0\right\}$

L25=\{1 $\left.1^{n^{3}} \mid n>0\right\}$
Proof by contradiction:
Assume L25 is regular. Consider $\mathbf{w = 1} \mathbf{1}^{p^{3}} \quad \mathrm{w} \in \mathrm{L} 25 \quad|\mathrm{w}|>p$
$x=1^{j} \quad y=1^{k} \quad z=1^{p^{3}-(j+k)}$
Try pumping: $x^{2} z->1^{j} 1^{2 k} 1^{p^{3}-(j+k)}->$
Total number of 1 's: $j+k+p^{3}-(j+k)=p^{3}+k$
Next word after $1^{p^{3}}$ will be $1^{(p+1)^{3}}$
Size of next-biggest word: $(p+1)^{3}=\left(p^{2}+2 p+1\right)(p+1)=p^{3}+3 p^{2}+3 p+1$
$k \leq 0$, so $p^{3}+k<p^{3}+3 p^{2}+3 p+1 \quad p^{3}+k<(p+1)^{3}$
Therefore, pumped wis not in L25.
9. For each of the following grammars, list three strings produced by the grammar

G26:

S-> AB|BA
$A->x A y \mid \varepsilon$ $B->B z B \mid y$

G27:
S -> A | AA
A -> 00 | 11
Examples: A -> 00, A -> 11, AA -> 0011

G28:

A -> 11A00 | ε
10. Provide the languages described by two of the grammars:

G27 (from above)
(مOU11)(00U11)*
00 U 11 U (00U11)(00U11)

G28 (from above)
10. Provide a grammar to produce the following languages

L32 $=\left\{0^{n}(11)^{n} \mid n \geq 0\right\}$
S-> 0S11| ε
$\mathbf{L 3 3}=\left\{01^{*} 00^{*}\right\}$

L34 $=\left\{\mathbf{w} \mid \mathbf{w}=\mathbf{w}^{\text {Reverse }}\right\} \quad$ Examples: 00100, 10101, 1111
11. Convert the following grammars to Chomsky Normal Form

G29:
S -> xAy | BA
$A \rightarrow z \mid A z A$
B-> y B| ε

G30:
$\mathrm{S}->\mathrm{BAB} \mid \mathrm{ABA}$
$A->y \mid z$
$B->x|A A| \varepsilon$

G31:
S-> ByBy
$B->x B x \mid \varepsilon$

Answer corrected March 5, 10am

Replace ε :
S -> ByBy \| Byy \| yBy \| yy
$B->x B x \mid x x$

Replace terminal--variable rules with all-variable rules:
$S->B U_{y} B U_{y}\left|B U_{y} U_{y}\right| U_{y} B U_{y} \mid U_{y} U_{y}$
$U_{y}->y$
$B \rightarrow U_{x} B U_{x} \mid U_{x} U_{x}$
$U_{x} \rightarrow x$

Replace 3^{+}variable rules with 2-variable rules
S $\rightarrow B C|B E| U_{y} D \mid U_{y} U_{y}$
C-> $\mathrm{U}_{\mathrm{y}} \mathrm{D}$
D->BUy
$\mathrm{E}->\mathrm{U}_{\mathrm{y}} \mathrm{U}_{\mathrm{y}}$
$U_{y}->y$
$B \rightarrow U_{x} F \mid U_{x} U_{x}$
$\mathrm{F} \rightarrow \mathrm{BU}_{\mathrm{x}}$
$U_{x}->x$

Old answer with errors

Replace-c:
$S \rightarrow$ ByBy | ByB | BBy \mid BB
$B \rightarrow x B x \mid x x$

Replace terminal-variable rules with all-variable rules:
$\mathrm{S} \rightarrow \mathrm{BU}_{+} \mathrm{BU} U_{+}+\mathrm{BBU}_{4}+\mathrm{BU}_{4} \mathrm{~B} \mid \mathrm{BB}$
$\forall_{y} \rightarrow y$

$B \rightarrow U_{*} B U_{*}+U_{*} U_{*}$
 $U_{*} \rightarrow *$

Replace-3 ${ }^{+}$variable rules with 2-variable rules
$S \rightarrow B C|B D| B E \mid B B$
$C \rightarrow U_{y} D$
$B \rightarrow B U_{4}$
$E \rightarrow U_{y} B$
$U_{y} \rightarrow y$
$B \rightarrow U_{*} F \mid U_{*} U_{*}$
$F \rightarrow B U_{*}$
$\forall_{*} \rightarrow *$

