Chomsky normal form

Back (for review), by popular demand

What is Chomsky Normal Form?

It's a way to express the rules of a CFG
Every CFG may be written in normal form

What is the structure of Chomsky Normal Form?

CFG is in Chomsky normal form if every rule takes form:
$\mathrm{A} \rightarrow \mathrm{BC}$
$\mathrm{A} \rightarrow \mathrm{a}$

- B and C may not be the start variable
- Only the start variable can transition to ε
- Each variable goes to two other variables or two one terminal
- The start variable may not point back to the start variable

Consider a typical CFG

- Variables and terminals mix

A -> xBy

- Some variables point to other single variables

$$
A \rightarrow C
$$

- Start variable can point to itself

S -> SS \| y

- Any variable can transition to ε B -> ε

Converting to Chomsky Normal Form

- $S_{0} \rightarrow S$ where S was original start variable
- Remove $A \rightarrow \varepsilon$

We won't use this rule in this class, will use all others

- For each multiple-occurrence of A, add new rules with A deleted

$$
R \rightarrow u A v A w \quad \text { change to } R \rightarrow u v A w|u A v w| u v w
$$

- Shortcut all unit rules

$$
\text { Given } A \rightarrow B \text { and } B \rightarrow u, \text { add } A \rightarrow u
$$

- Replace rules $A \rightarrow u_{1} u_{2} u_{3} \ldots u_{k}$ with:

$$
A \rightarrow u_{1} A_{1}, A_{1} \rightarrow u_{2} A_{2}, A_{2} \rightarrow u_{3} A_{3}, \ldots, A_{k-2} \rightarrow u_{k-1} u_{k}
$$

Let's Chomsky-ize a non-Chomsky form grammar

$$
\begin{aligned}
& \text { Replace terminals- } \quad S \text {-> AB } \\
& \text { G1: } \\
& \text { variable mixes with } \\
& A->U_{c} D \mid c \\
& S \text {-> AB } \\
& S \rightarrow A B \\
& B \rightarrow B B \mid n \\
& \text { A }->\mathrm{cAn} \mid c \\
& A \rightarrow U_{c} A U_{n} \mid c \\
& B \rightarrow B B|n \quad B \rightarrow B B| n \\
& U_{c} \rightarrow C \\
& U_{n} \rightarrow n \\
& \text { Convert 3-variable rules } \\
& \text { to 2-variable rules }
\end{aligned}
$$

More on G1: Typical to add Replace S in $S_{0}->S$ rule

Reminder:

CFG is in Chomsky normal form if every rule takes form:
$\mathrm{A} \rightarrow \mathrm{BC}$
$\mathrm{A} \rightarrow \mathrm{a}$

- B and C may not be the start variable
- Only the start variable can transition to ε
- Each variable goes to two other variables or two one terminal
- The start variable may not point back to the start variable

Let's get more complicated with grammar G2
Let's add new start
state first this time:

G2:

$S->A B$
$A \rightarrow c A n|c| \varepsilon \quad S \rightarrow A B$
$S_{0} \rightarrow S$
$S_{0}->S$
$S \rightarrow A B \mid \varepsilon B$
$B \rightarrow B B \mid n$
$A \rightarrow c A n|c| \varepsilon$
A $->\mathrm{cAn}|\mathrm{c}| \varepsilon \mid \mathrm{c} \varepsilon \mathrm{n}$
$B \rightarrow B B|n \quad B \rightarrow B B| n$
To remove ε, first plug
it in wherever it applies

More on G2 Finish removing ε

$S_{0}->S$
 $S \rightarrow A B \mid B$

$S \rightarrow A B|\varepsilon B \quad A \rightarrow c A n| c \mid c n$
$S \rightarrow A B|\varepsilon B \quad A \rightarrow c A n| c \mid c n$
$A \rightarrow c A n|c| \varepsilon|c \varepsilon n \quad B \rightarrow B B| n \quad S_{0} \rightarrow S$
$B \rightarrow B B \mid n$

Replace terminalsvariable mixes with variables only
$S->A B \mid B$
$A \rightarrow U_{c} A U_{n}|c| U_{c} U_{n}$
$B \rightarrow B B \mid n$
$U_{c} \rightarrow C$
$U_{n}->n$

More on G2 Convert 3-variable rules to 2 -variable rules

Replace single variables on right side (S, B)

$$
\begin{array}{lll}
S_{0} \rightarrow S & S_{0} \rightarrow S & S_{0} \rightarrow A B|B B| n \\
S \rightarrow A B \mid B & S->A B \mid B & S \rightarrow A B|B B| n \\
A \rightarrow U_{c} A U_{n}|c| U_{c} U_{n} A \rightarrow U_{c} D|c| U_{c} U_{n} A \rightarrow U_{c} D|c| U_{c} U_{r} \\
B \rightarrow B B \mid n & B \rightarrow B B \mid n & B \rightarrow B B \mid n \\
U_{c} \rightarrow c & U_{c} \rightarrow c & U_{c} \rightarrow c \\
U_{n} \rightarrow n & U_{n} \rightarrow n & U_{n} \rightarrow n \\
& D->A U_{n} & D->A U_{n}
\end{array}
$$

G2 final answer

$$
\begin{array}{|l}
S_{0} \rightarrow A B|B B| n \\
S \rightarrow A B|B B| n \\
A->U_{c} D|c| U_{c} U_{n} \\
B \rightarrow B B \mid n \\
U_{c} \rightarrow c \\
U_{n} \rightarrow n \\
D \rightarrow A U_{n}
\end{array}
$$

Reminder:

CFG is in Chomsky normal form if every rule takes form:
$\mathrm{A} \rightarrow \mathrm{BC}$
$\mathrm{A} \rightarrow \mathrm{a}$

- B and C may not be the start variable
- Only the start variable can transition to ε
- Each variable goes to two other variables or two one terminal
- The start variable may not point back to the start variable

Let's get even more complicated
Add new start state:
G3:
$S_{0} \rightarrow S$
Remove $\boldsymbol{\varepsilon}$
$S \rightarrow A B|B S \quad S \rightarrow A B| B S$
$\mathrm{A} \rightarrow \mathrm{cAn}|\mathrm{c}| \varepsilon \quad \mathrm{A}->\mathrm{cAn}|\mathrm{c}| \varepsilon$
$B \rightarrow B B|n \quad B \rightarrow B B| n$

$$
B->B B \mid n
$$

More on G3 Replace terminalsvariable mixes with variables only

$$
\begin{array}{ll}
S_{0} \rightarrow S \\
S \rightarrow A B|B S| B & S_{0} \rightarrow S \\
A \rightarrow C A n|c| c n & S \rightarrow A B|B S| B \\
B \rightarrow B B \mid n & A \rightarrow U_{c} A U_{n}|c| U_{c} U_{n} \\
& B \rightarrow B B \mid n \\
& U_{c} \rightarrow c \\
& U_{n} \rightarrow n
\end{array}
$$

More on G3 Replace single variables

on right side (S, B)

$$
\begin{array}{ll}
S_{0} \rightarrow S \\
S \rightarrow A B|B S| B & S_{0} \rightarrow A B|B S| B B \mid n \\
A \rightarrow U_{c} A U_{n}|c| U_{c} U_{n} & A \rightarrow U_{c} A U_{n}|c| B S|B B| n \\
B \rightarrow B B \mid n & B \rightarrow B B \mid n \\
U_{c} \rightarrow c & U_{c} \rightarrow c \\
U_{n} \rightarrow n & U_{n} \rightarrow n
\end{array}
$$

More on G3

Convert 3-variable rules

 to 2-variable rules$S_{0}->A B|B S| B B \mid n$ $S \rightarrow A B|B S| B B \mid n$
$A \rightarrow U_{c} A U_{n}|c| U_{c} U_{n}$
$B \rightarrow B B \mid n$
$U_{\mathrm{c}} \rightarrow \mathrm{C}$
$U_{n}->n$
$D->A U_{n}$

Reminder:

CFG is in Chomsky normal form if every rule takes form:
$\mathrm{A} \rightarrow \mathrm{BC}$
$\mathrm{A} \rightarrow \mathrm{a}$

- B and C may not be the start variable
- Only the start variable can transition to ε
- Each variable goes to two other variables or two one terminal
- The start variable may not point back to the start variable

