Chomsky normal form

Back (for review), by popular demand

What is Chomsky Normal Form?

It's a way to express the rules of a CFG

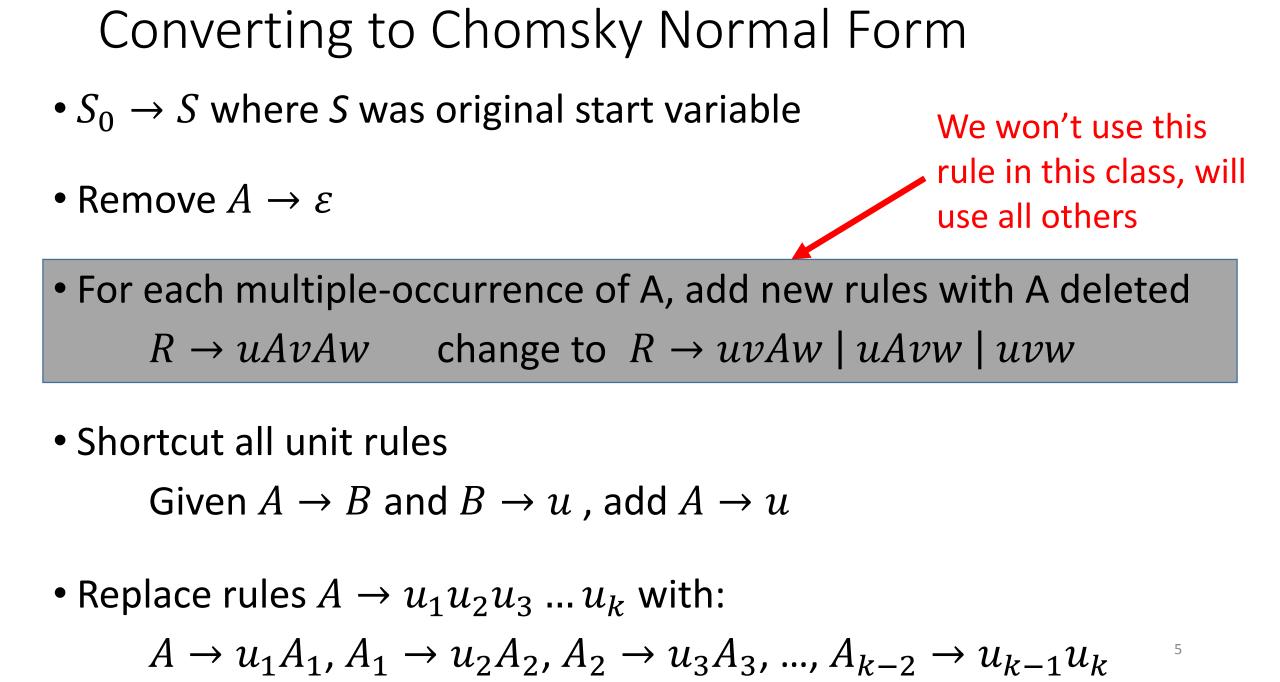
Every CFG may be written in normal form

What is the structure of Chomsky Normal Form?

- $A \rightarrow BC$ $A \rightarrow a$
- B and C may not be the start variable
- Only the start variable can transition to ε
- Each variable goes to two other variables or two one terminal
- The start variable may not point back to the start variable

Consider a typical CFG

- •Variables and terminals mix A -> xBy
- •Some variables point to other single variables A -> C
- •Start variable can point to itself S -> SS | y
- •Any variable can transition to ε B -> ε



Let's Chomsky-ize a non-Chomsky form grammar

S -> AB **Replace terminals**variable mixes with A -> U_cD | c G1: variables only B -> BB | n S -> AB S -> AB U_c -> c A -> cAn | c $A \rightarrow U_c A U_n \mid c$ **U**_n -> **n** B -> BB | n B -> BB | n **D** -> **AU**_n U_c -> c **U**_n -> n **Convert 3-variable rules** to 2-variable rules

		lace S in	
G1:	w start state	> S rule Final ans	swer!
S -> AB	S ₀ -> S	S ₀ -> AB	
A -> <mark>U _</mark> D c	S -> AB	S -> AB	
B -> BB n	A -> <mark>U_cD</mark> c	A -> <mark>U_cD</mark> c	
U _c -> c	B -> BB n	B -> BB n	
U _n -> n	U _c -> c	U _c -> c	
 D -> AU _n	U _n -> n	U _n -> n	
This already fits normal form!	D -> AU _n	D -> AU _n	

Reminder:

- $A \rightarrow BC$ $A \rightarrow a$
- B and C may not be the start variable
- Only the start variable can transition to ε
- Each variable goes to two other variables or two one terminal
- The start variable may not point back to the start variable

Let's get more complicated with grammar G2

Let's add new start **A** state first this time: G2: $S_0 -> S$ **S**₀ -> **S** S -> AB S -> AB | **E**B S -> AB $A \rightarrow cAn \mid c \mid \varepsilon$ $A \rightarrow cAn | c | \varepsilon | c\varepsilon$ A -> cAn | c | ε B -> BB | n B -> BB | n B -> BB | n To remove ε , first plug it in wherever it applies

```
More on G2 Finish removing ε
                                                             Replace terminals-
                                                             variable mixes with
                                →S<sub>0</sub>->S
S -> AB | B
                                                             variables only
S<sub>0</sub> -> S
S -> AB | EB
                                   A -> cAn | c | cn
A \rightarrow cAn | c | \varepsilon | c\varepsilon n B \rightarrow BB | n S_0 \rightarrow S
B -> BB | n
                                                      S -> AB | B
                                                      A \rightarrow U_c A U_n \mid c \mid U_c U_n
                                                      B -> BB | n
                                                      U<sub>c</sub> -> c
```

	Convert 3-variable rules o 2-variable rules	Replace single variables on right side (S, B)
S ₀ -> S	S ₀ -> S	S ₀ -> AB BB n
S -> AB B	S -> AB B	S -> AB BB n
A -> U _c A U _n c l	$J_{c}U_{n} A \rightarrow U_{c}D \mid c \mid U_{c}$	$_{c}U_{n} A \rightarrow U_{c}D c U_{c}U_{r}$
B -> BB n	B -> BB n	B -> BB n
U _c -> c	U _c -> c	U _c -> c
U _n -> n	U _n -> n	U _n -> n
	D -> AU _n	D -> AU _n

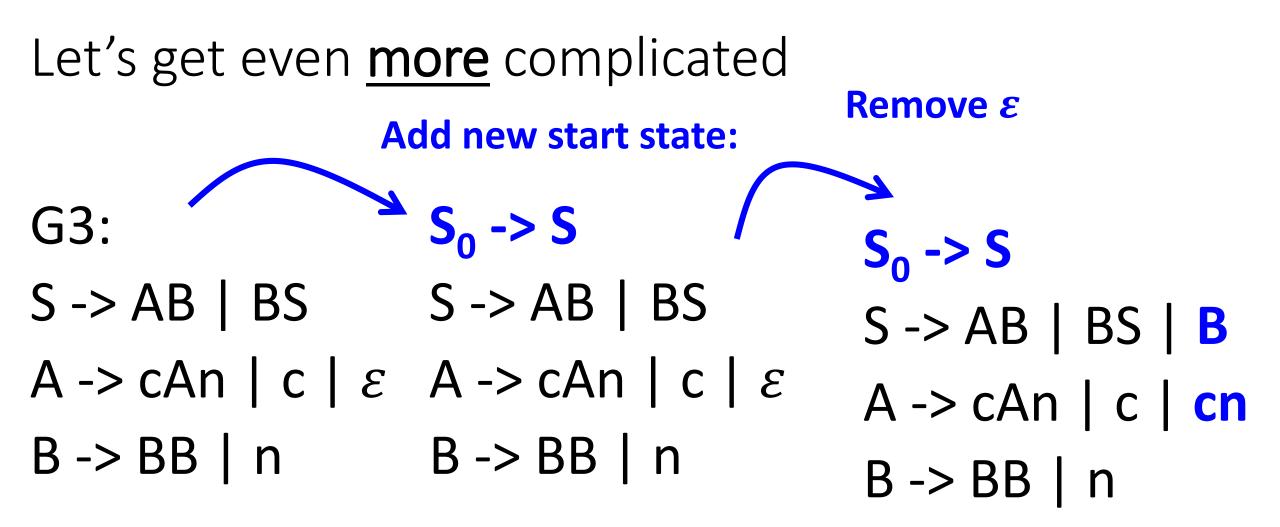
G2 final answer

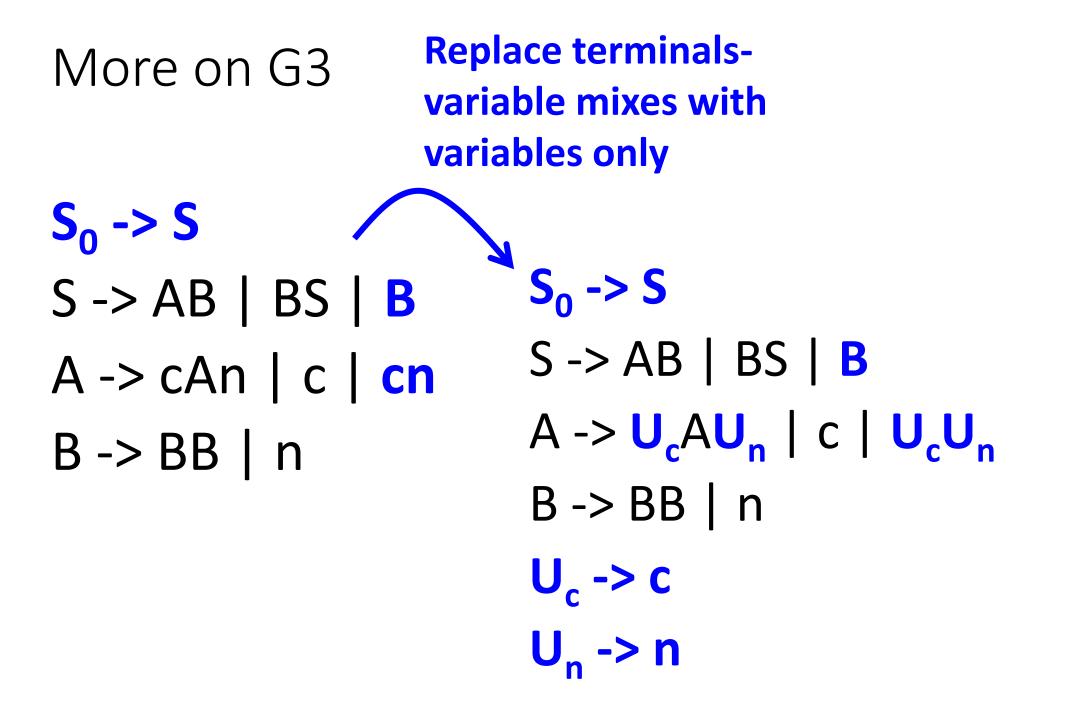
S₀-> AB | BB | n S -> AB | **BB | n** $A \rightarrow U_c D \mid c \mid U_c U_n$ B -> BB | n U_c -> c U_n -> n **D** -> **AU**_n

Produces same CFL as: $S \rightarrow AB$ $A \rightarrow cAn | c | \varepsilon$ $B \rightarrow BB | n$

Reminder:

- $A \rightarrow BC$ $A \rightarrow a$
- B and C may not be the start variable
- Only the start variable can transition to ε
- Each variable goes to two other variables or two one terminal
- The start variable may not point back to the start variable





More on G3 **Replace single variables on right side (S, B)**

 $S_0 \rightarrow AB \mid BS \mid BB \mid n$ **S**₀ -> **S** S -> AB | BS | B S -> AB | BS | **BB** | **n** $A \rightarrow U_{c}AU_{n} \mid c \mid U_{c}U_{n} \quad A \rightarrow U_{c}AU_{n} \mid c \mid U_{c}U_{n}$ B -> BB | n B -> BB | n U_c -> c U_c -> c **U**_n -> **n U**_n -> **n**

More on G3

Convert 3-variable rules to 2-variable rules

 $S_0 \rightarrow AB \mid BS \mid BB \mid n$ S -> AB | BS | **BB** | **n** $A \rightarrow U_c A U_n \mid c \mid U_c U_n$ B -> BB | n U_c -> c

```
|S_0 \rightarrow AB| |BS| |BB| |n|
S -> AB | BS | BB | n
|A \rightarrow U_c D| c | U_c U_n
B -> BB | n
U<sub>c</sub> -> c
       AU_
```

Reminder:

- $A \rightarrow BC$ $A \rightarrow a$
- B and C may not be the start variable
- Only the start variable can transition to ε
- Each variable goes to two other variables or two one terminal
- The start variable may not point back to the start variable