

More modulo antrimetic	
Generalize M5 to accept if sum of s instead of 3	ymbols is a multiple of <i>i</i>
$(\{q0, q1, q2, q3, \cdots, q_{i-1}\}, \{0, 1, 2, R\}$	ESET}, δ, q0, F)
$\delta(qj, RESET) = q0$	Correction on January 31
$\delta(qj, RESET) = q0$ $\delta(qj, 0) = qj$	Correction on January 31 Said: mod 3
$\delta(qj, RESET) = q0$ $\delta(qj, 0) = qj$ $\delta(qj, 1) = qk$ for k = j+1 mod i	Correction on January 31 Said: mod 3 Fixed to: mod i

Definition of M accepting a string

Let $M = (Q, \Sigma, \delta, q0, F)$ be a finite automaton and let $w = w_1 w_2 \cdots w_n$

Then M accepts w if a sequence of states $r_0,\,r_1,\,...,\,r_n$ in Q exists with 3 conditions

• $r_0=q_0$ • $\delta(r_i, w_{i+1}) = r_{i+1}$ for $i = 0, 1, \dots, n-1$ • $r_n \in F$

Regular operations

Let A and B be languages. We define 3 regular operations: • Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$

- Concatenation: $A \cdot B = \{xy | x \in A \text{ and } y \in B\}$
- Star: $A^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in A\}$ • Repeat a string 0 or more times

Examples of regular operations Let $A = \{good, bad\}$ and $B = \{boy, girl\}$ What is: • $A \cup B = \{good, bad, boy, girl\}$ • $A \cdot B = \{goodboy, goodgirl, badboy, badgirl\}$ • $A^* = \{\varepsilon, good, bad, goodgood, goodbad, badgood, badbad, \cdots\}$

Closure

A collection of objects is closed under an operation if applying that operation to members of the collection returns an object in the collection

Regular languages are closed under U , $\cdot,\,\ast$

Closure of Union

Theorem 1.25: The class of regular languages is closed under the union operation

Proof by construction

Closure of Union – Proof by Construction Let us assume M1 recognizes language L1 • Define M1 as M1 = $(Q, \Sigma, \delta_1, q_0, F_1)$ Let us assume M2 recognizes language L2 • Define M2 as M2 = $(R, \Sigma, \delta_2, r_0, F_2)$ **Proof by construction:** Construct M3 to recognize L3 = L1 U L2 • Let M3 be defined as M3 = $(S, \Sigma, \delta_3, s_0, F_3)$ Closure of Union – Proof by Construction • Let M3 be defined as M3 = $(S, \Sigma, \delta_3, s_0, F_3)$ Use each state of M3 to simulate being in a state of M1 and another state in M2 simultaneously M3 states: $S = \{(q_i, r_j) | q_i \in Q \text{ and } r_j \in R\}$ Start state: $s_0 = (q_0, r_0)$ Accept state: $F_3 = \{(q_i, r_j) | q_i \in F_1 \text{ or } r_j \in F_2\}$ Transition function: $\delta_3((q_i, r_j), x) = (\delta_3(q_i, x), \delta_3(q_j, x))$

Closure of Concatenation

Theorem 1.26: The class of regular languages is closed under the concatenation operation

- If A1 and A2 are regular languages, then so is $A1\cdot A2$
- Challenge: How do we know when M1 ends and M2 begins?

Determinism vs. non-determinism

Determinism: Single transition allowed given current state and given input

Non-determinism:

26

- multiple transitions allowed for current state and given input
- transition permitted for null input $\boldsymbol{\varepsilon}$

NFA in action

30

- When there is a choice, follow all paths like cloning
- If there is no forward arrow, path terminates and clone dies (no accept)
- NFA will "accept" if at least one path terminates at accept

Alternative thought:

• Magically pick best path from the set of options

NFA -> DFA

Build an NFA that accepts all strings over {0,1} with 1 in the third position from the end

Can we construct a DFA for this?

Formal definition of Nondeterministic Finite Automaton Similar to DFA: a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ • Q is a finite set called states

• $\boldsymbol{\Sigma}$ is a finite set called the alphabet

- $\delta: Q \times \Sigma \varepsilon \longrightarrow P(Q)$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Two machines are equivalent if they recognize the same language

Every NFA has an equivalent DFA

Equivalenc	e of NFAs and DFAs	
NFA	$N1 = (Q, \Sigma, \delta, q_0, F)$	
Define DFA	$\mathbf{M1} = \left(\mathbf{R}, \boldsymbol{\Sigma}, \boldsymbol{\delta}^{\mathbf{D}}, \mathbf{r}_{0}, \mathbf{F}^{\mathbf{D}}\right)$	
• R=P(Q) R = {{}, {q ₀ },, {q _n }, {q ₁ , q ₂ },{q _{n-1} , q _n },} every combination of states in Q		
• r ₀ ={q ₀ }		
• $F^D = \{s \in R \mid s \text{ contains at least 1 accept state for N1} \}$		
• $\delta^D(r_i,x)$ Consider all states q_j in r_i , find r_k that is union of outputs for N1's $\delta(q_j,x)$ for all q_j		

Closure with NFAs

- Proofs by construction fewer states!
- Any NFA proof applies to DFA

Given two regular languages A_1 and A_2 recognized by N1 and N2 respectively, construct N to recognize $A_1 U A_2$

Let's consider two languages L1: start with 0, end with 1 L2: start with 1, end with 0 Construct machines for each languages Construct machines N3 to recognize L1 U L2


```
\begin{array}{l} \mbox{Closure of regular languages under union} \\ \mbox{Let N1 = (Q, \Sigma, \delta_1, q_0, F_1) recognize L1} \\ \mbox{Let N2 = (R, \Sigma, \delta_2, r_0, F_2) recognize L2} \\ \mbox{N3 = (Q_3, \Sigma, \delta_3, s_0, F_3) will recognize L1 U L2 iff} \\ \mbox{Q_3 = Q \cup R \cup \{s_0\}} \\ \mbox{Start state: } s_0 \\ \mbox{F_1 = F_2 \cup F_3} \\ \mbox{} \delta_3(q, a) = \begin{cases} \delta_1(q, a) & \mbox{if } q \in Q \\ \delta_2(q, a) & \mbox{if } q \in R \\ \{q_0, r_0\} & \mbox{if } q = s_0 \mbox{ and } a = \epsilon \end{cases} \end{array}
```


2/13/2017

Closure of regular languages under concatenation
Let N1 =
$$(Q, \Sigma, \delta_1, q_0, F_1)$$
 recognize L1
Let N2 = $(R, \Sigma, \delta_2, r_0, F_2)$ recognize L2
N3 = $(Q_3, \Sigma, \delta_3, s_0, F_3)$ will recognize L₁ · L₂ iff
 $Q_3 = Q \cup R$
Start state: q_0
 $F_1 = F_3$
 $\delta_3(q, a) = \begin{cases} \delta_1(q, a) & \text{if } q \in Q \\ \delta_2(q, a) & \text{if } q \in R \\ r_0 & \text{if } q \in F_1 \text{ and } a = \epsilon \end{cases}$

Closure of regular languages under star
Let N1 = $(Q, \Sigma, \delta_1, q_0, F_1)$ recognize L1
N3 = $(Q_3, \Sigma, \delta_3, s_0, F_3)$ will recognize L1 [*] iff $Q_3 = Q \cup \{s_0\}$
Start state: s_0 $F_1 = F_3 \cup \{s_0\}$
$\delta_{3}(q, a) = \begin{cases} \delta_{1}(q, a) & \text{if } q \in Q \\ q_{0} & \text{if } q = s_{0} \text{ and } a = \varepsilon \\ s_{0} & \text{if } q \in F_{1} \text{ and } a = \varepsilon \end{cases}$
51

Regular expressions – formal definition	
R is a regular expression if R is • a, for some a in alphabet Σ	
• 8	
• Ø	
$\bulletR1 \cup R2$, where R1 and R2 are regular expressions	
\bullet R1 \cdot R2, where R1 and R2 are regular expressions	
 R1*, where R1 is a regular expression 	
This is a recursive definition	53

Examples of Regular Expressions	
• 0*10*	
• $\Sigma^* 1 \Sigma^*$	
• 01 ∪ 10	
$\bullet (0 \cup \varepsilon)(1 \cup \varepsilon)$	
	54

