CISC 4090 Theory of Computation

Non-regular languages

Professor Daniel Leeds dleeds@fordham.edu JMH 332 Regular languages

Definition: a language is called a <u>regular language</u> if some finite automaton recognizes it

What languages cannot be recognized by an FSA

Regular languages use finite memory (finite states) Non-regular languages require infinite memory

Are the following regular?

 $L1 = \{w \mid w \text{ has at least } 100 \text{ 1's} \}$

L2 = {w | w has same number of 0's and 1's}

L3 = {w | w is of the form $0^n 1^n$, n>0}

What about this class of languages

 $\Sigma = \{a, b\}$

- $L_n = \{w \mid w \text{ contains } n \text{ b's in a row } \}$
- $L_3 = \{abbba, aabbba, ababbbba, ...\}$
- $L_4 = \{babbbbab, bbbb, aaabbbbab, ...\}$

 L_n is regular for each value of n

Pumping lemma, continued

1. For each $i \ge 0$, $xy^i z \in L$

There is a loop

2. |y| > 0

There is a loop of letters (not of ε , which would effectively not be a loop)

3. $|xy| \le p$

Not allowed more states than pumping length (keep memory finite!)

Proof idea

If $|s| \le p$, trivially true

- If |s| > p, consider the states the FSA goes through
- Since there are only p states, |s|>p, one state must be repeated
- Pigeonhole principle: There must be a cycle

-	1^n } is not regular B={01, 0011, 000111, 00001111,} ction: assume B is regular thus, any w ∈ B can be "pumped" if w >p	
 First suggestion: w=0011, x=0, y=01, z=1 – counterexample xy²z=001011∉ B Close! But maybe 0011 ≤ p, how do we know this will still be a problem when string w is longer than p 		
Our solution:	Let $w=0^{p}1^{p} w >p$, so must be "pump"-able $ xy \le p$ so, $x=0^{f}y=0^{g}$, $f+g \le p$ and $g>0$ When we pump w: $xy^{2}z$, we get $p+g$ 0's followed by p 1s. $xy^{2}z \notin B$ Contradiction, pumped w $\notin B$	

$\begin{array}{l} Prove\ F{=}\{WW\ \ W{=}(0\ U\ 1)^*\ \} \text{ is}\\ Proof\ by\ contradiction{:} assume\ F\ is\ regular\\ thus,\ any\ v\ \in\ F\ can\ b \end{array}$	-		
 First suggestion: v =p+2 (if p even); v=ww, s counterexample xy ≤ p ≤ w Say xy =p, v=xya where a i the first symbol of z Pump v: xy²z, Now xy²a≠w, 	F={11, 00, 0101, 1010, s 11011101,}		
Challenge: What if we can re-group the symbols in xy ² z into a new w ^{new} so v ^{pumped} =w ^{new} w ^{new} ? How can we guarantee this scenario won't always happen? (Intuitively, we wouldn't expect this to be a likely problem.)			

Prove F={ww | w=(0 U 1)* } is not regular Proof by contradiction: assume F is regular thus, any v \in F can be "pumped" if |v|>p • Our solution: Let w=0^p10^p1 |w|>p so must be "pump"-able |xy| \leq p so, x=0^f y=0^g, f + g \leq p and g>0 When we pump w: xy²z, we get *p*+*g* 0's followed by 10^p1 . xy²z \notin B **Contradiction, pumped w** \notin F F={11, 00, 0101, 1010, 11011101, ...}

Prove $E=\{1^{n^2}\}$ is not regular			
Proof by contradiction: assume E is regular thus, any $w \in E$ can be "pumped" if $ w >p$			
xy ≤ p so xy²z ≤ p² What's the w ^{nexi} Pumping w Thus, xy²z ∉	+ p length of the next-biggest string after $ w =p^2$ t-biggest = (p+1) ² = p ² +2p+1 once gives length at most p ² +p < p ² +2p+1		

Common pumping proof-by-contradiction

Define a simple word w that is guaranteed to have more than p symbols, and you know the first p symbols

Show repetition of intermediate y string violates language rules

13