CISC 4090
 Theory of Computation

Non-regular languages

Professor Daniel Leeds dleeds@fordham.edu

JMH 332

Regular languages

Definition: a language is called a regular language if some finite automaton recognizes it

What languages cannot be recognized by an FSA
Regular languages use finite memory (finite states)
Non-regular languages require infinite memory

Are the following regular?

$\mathrm{L} 1=\{\mathrm{w} \mid \mathrm{w}$ has at least 100 1's $\}$
$L 2=\{w \mid w$ has same number of 0 's and 1's $\}$
$L 3=\left\{w \mid w\right.$ is of the form $\left.0^{n} 1^{n}, n>0\right\}$

What about this class of languages
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
$\mathrm{L}_{\mathrm{n}}=\{\mathrm{w} \mid \mathrm{w}$ contains n b's in a row $\}$

- $\mathrm{L}_{3}=\{$ abbba, aabbba,ababbbba, ...\}
- $\mathrm{L}_{4}=\{$ babbbbab, bbbb, aaabbbbab, ...\}
L_{n} is regular for each value of n

Regular languages can be infinite

-E.g., a(ba)*b
For FSA to generate an infinite set of strings, there must be ???? between some states

Pumping lemma

Every string in regular language L with length greater than the pumping length p can be "pumped"

Every string $s \in L(|s|>p)$ can be written as xyz where

1. For each $i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

If L violates pumping lemma,
then it is not regular

Proof idea

If $|\mathrm{s}| \leq \mathrm{p}$, trivially true
If $|s|>p$, consider the states the FSA goes through

- Since there are only p states, $|s|>p$, one state must be repeated
- Pigeonhole principle: There must be a cycle

3. $|\mathrm{xy}| \leq \mathrm{p}$

Not allowed more states than pumping length (keep memory finite!)

Prove $B=\left\{0^{n} 1^{n}\right\}$ is not regular $B=\{01,0011,000111$, 00001111,\}
Proof by contradiction: assume B is regular
thus, any $w \in B$ can be "pumped" if $|w|>p$

- First suggestion: $w=0011, x=0, y=01, z=1$ - counterexample $x y^{2} z=001011 \notin \mathrm{~B}$
Close! But maybe $|0011| \leq p$, how do we know this will still be a problem when string w is longer than p

Our solution: Let $\mathbf{w = 0} \mathbf{0}^{\mathbf{p}} \quad|w|>p$, so must be "pump"-able $|x y| \leq p$ so, $x=0^{f} y=0^{g}, f+g \leq p$ and $g>0$ When we pump w: $x y^{2} z$, we get $p+g 0$'s followed by $p 1$ s. $x y^{2} z \notin \mathrm{~B}$ Contradiction, pumped w $\notin \mathrm{B}$

Prove $F=\left\{w w \mid w=(0 \cup 1)^{*}\right\}$ is not regular

Proof by contradiction: assume F is regular
thus, any $v \in F$ can be "pumped" if $|v|>p$

- First suggestion: $|v|=p+2$ (if p even); $v=w w$, so $|w|=\frac{p+2}{2}$
counterexample $|x y| \leq p \leq|w|$
Say $|x y|=p, v=x y a$ where a is $\quad F=\{11,00,0101,1010$ the first symbol of $z \quad 11011101, \ldots\}$ Pump v: $x y^{2} z$, Now $x y^{2} a \neq w$, now $v \neq w w$

Challenge: What if we can re-group the symbols in $x y^{2} z$ into a new $w^{\text {new }}$ so $v^{\text {pumped }}=w^{\text {new }} w^{\text {new }}$? How can we guarantee this scenario won't always happen? (Intuitively, we wouldn't expect this to be a likely problem.)

Prove $\mathrm{E}=\left\{1^{n^{2}}\right\}$ is not regular

Proof by contradiction: assume E is regular
thus, any $w \in E$ can be "pumped" if $|w|>p$

Our solution:
Let $\mathbf{w}=\mathbf{1}^{\mathbf{p}^{2}} \quad|w|>p$, so must be "pump"-able
$|x y| \leq p$ so $|y| \leq p$
$\left|x y^{2} z\right| \leq p^{2}+p$
What's the length of the next-biggest string after $|w|=p^{2}$

$$
\left|w^{\text {next-biggest }}\right|=(p+1)^{2}=p^{2}+2 p+1
$$

Pumping w once gives length at most $p^{2}+p<p^{2}+2 p+1$
Thus, $x y^{2} z \notin \mathrm{E}$
Contradiction, pumped w $\notin \mathrm{E}$

Common pumping proof-by-contradiction
Define a simple word w that is guaranteed to have more than p symbols, and you know the first p symbols

Show repetition of intermediate y string violates language rules

