Quiz 3 practice questions

1. Presume the input alphabet $\Sigma=\{0,1\}$. For the following TMs, provide an informal description. As a harder challenge, you can provide a state diagram as well. You may assume the TM always starts at the first non-blank character, and that blanks are represented as ~.
a. Decide whether input string is a palindrome: $w=w^{\text {Reverse }}$
b. Decide $\left\{\Sigma^{n} \# \Sigma^{m} \mid n>m>0\right\}$
c. Transducer that adds 01 to the end of the input string. E.g., if the tape started with 0100, the TM would conclude with the string 010001 on the tape. I recommend you write the state diagram implementation for this one. It's relatively easy and something similar could (maybe) appear on the quiz.
2. Presume the input alphabet $\Sigma=\{a, b\}$. Provide an informal description and state diagram for the following PDAs
a. Recognize the language $\left\{a^{n}(b b)^{n} \mid n>0\right\}$
b. Recognize the language $\{a b * a\}$
3. Consider the following TM.

Presuming we start with the first (left-most) non-~ character on the tape, list the configurations the TM goes through for each input below. If there are more than 6 configurations, just list the first 6 .
a. $a \mathrm{ab}$
b. abb

