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Machine Learning
CISC 5800

Dr Daniel Leeds

What is machine learning

• Finding patterns in data

• Adapting program behavior

• Advertise a customer’s favorite products

• Search the web to find pictures of dogs

• Change radio channel when user says “change channel”
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Advertise a customer’s 
favorite products

This summer, I 
had two meetings, 
one in Portland 
and one in 
Baltimore

Today I get an 
e-mail from 
Priceline:
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Search the web to find 
pictures of dogs

Filenames:
- Dog.jpg
- Puppy.bmp

Caption text

Pixel patterns
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• Distinguish user’s voice from music

• Understand what user has said

Change radio channel when 
user says “change channel”
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What’s covered in this class

• Theory: describing patterns in data
• Probability
• Linear algebra

• Calculus/optimization

• Implementation: programming to find and react to patterns 
in data
• Matlab

• Data sets of text, speech, pictures, user actions, neural data…
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Outline of topics

• Groundwork: probability, slopes, and programming

• Classification overview: Training, testing, and overfitting

• Discriminative and generative methods: Regression vs Naïve Bayes

• Classifier theory: Separability, information criteria

• Support vector machines: Slack variables and kernels

• Expectation-Maximization: Gaussian mixture models

• Dimensionality reduction: Principle Component Analysis

• Graphical models: Bayes nets, Hidden Markov model
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What you need to do in this class

• Class attendance

• Assignments: homeworks (4) and final project

• Exams: midterm and final
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Resources

• Office hours: Wednesday 3-4pm and by appointment

• Course web site: http://storm.cis.fordham.edu/leeds/cisc5800

• Fellow students

• Textbooks/online notes

• Matlab
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Outline of topics

• Groundwork: probability, slopes, and programming

• Classification overview: Training, testing, and overfitting

• Discriminative and generative methods: Regression vs Naïve Bayes

• Classifier theory: Separability, information criteria

• Support vector machines: Slack variables and kernels

• Expectation-Maximization: Gaussian mixture models

• Dimensionality reduction: Principle Component Analysis

• Graphical models: Bayes nets, Hidden Markov model
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Probability

What is the probability that a child likes chocolate?

The “frequentist” approach:

• Ask 100 children

• Count who likes chocolate

• Divide by number of children asked

P(“child likes chocolate”) = 
85

100
= 0.85

In short:  P(C)=0.85 C=“child likes chocolate”

Name Chocolate?

Sarah Yes

Melissa Yes

Darren No

Stacy Yes

Brian No
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General probability properties

P(A) means “Probability that statement A is true”

• 0≤Prob(A) ≤1

• Prob(True)=1

• Prob(False)=0
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Random variables

A variable can take on a value from a given set of values:

• {True, False}

• {Cat, Dog, Horse, Cow}

• {0,1,2,3,4,5,6,7}

A random variable holds each value with a given probability

To start, let us consider a binary variable

• P(LikesChocolate) = P(LikesChocolate=True) = 0.85
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Complements

What is the probability that a child DOES NOT like chocolate?

Complement: C’ = “child doesn’t like chocolate”

P(C’) =

In general: P(A’) =

C=“child likes chocolate”

All children (the full “sample space”) 

C

C’
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P(“child likes chocolate”) = 
85

100
= 0.85

Addition rule

Prob(A or B) = ???

Name Chocolate? Ice cream?

Sarah Yes No

Melissa Yes Yes

Darren No No

Stacy Yes Yes

Brian No Yes

All children

C I

C=“child likes chocolate”
I=“child likes ice cream”
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Joint and marginal probabilities

Across 100 children:

• 55 like chocolate AND ice cream

• 30 like chocolate but not ice cream

• 5 like ice cream but not chocolate

• 10 don’t like chocolate nor ice cream

Prob(I) = 
Prob(C) = 
Prob(I,C)
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Corrected 
slide

Conditional probability

Across 100 children:

• 55 like chocolate AND ice cream P(C,I)

• 30 like chocolate but not ice cream P(C,I’)

• 5 like ice cream but not chocolate P(C’,I)

• 10 don’t like chocolate nor ice cream  P(C’,I’)

• Prob(C|I) : Probability child likes chocolate given s/he likes ice cream

P(C|I) = 
𝑃(𝐶,𝐼)

𝑃(𝐼)
=

𝑃(𝐶,𝐼)

𝑃 𝐶,𝐼 +𝑃(𝐶′,𝐼)

Also, Multiplication Rule:

P(A,B) = P(A|B) P(B)

P(A,B):Probability A and B 
are both true
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Corrected slide Independence

If the truth value of B does not affect the truth value of A:

• P(A|B) = P(A)

Equivalently

• P(A,B) = P(A) P(B)
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Multi-valued random variables

A random variable can hold more than two values, each with a 
given probability

• P(Animal=Cat)=0.5

• P(Animal=Dog)=0.3

• P(Animal=Horse)=0.1

• P(Animal=Cow)=0.1
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Probability rules: multi-valued variables

For a given variable A:

• P(𝐴 = 𝑎𝑖 and 𝐴 = 𝑎𝑗) = 0 if 𝑖 ≠ 𝑗

•  𝑖 𝑃 𝐴 = 𝑎𝑖 = 1

• 𝑃 𝐴 = 𝑎𝑖 =  𝑗 𝑃(𝐴 = 𝑎𝑖 , 𝐵 = 𝑏𝑗)

cat dog

horse cow

animal
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Bayes rule

P(A|B) =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)

Terminology:

• P(A|B) is the “posterior probability”

• P(B|A) is the “likelihood”

• P(A) is the “prior probability”

We will spend (much) more time with Bayes rule in following lectures
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Continuous random variables

A random variable can take on a continuous range of values

• From 0 to 1

• From 0 to ∞

• From −∞ to ∞

Probability expressed through a 
“probability density function” f(x)

𝑃 𝐴𝜖 𝑎, 𝑏 =  𝑎
𝑏
𝑓 𝑥 𝑑𝑥

“Probability A has value between i and j is
area under the curve of f between i and j x

f(x)

-2    -1     0     1     2
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Common probability distributions

• Uniform: 𝑓𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑥 =  
1

𝑏−𝑎
𝑖𝑓 𝑎 ≤ 𝑥 ≤ 𝑏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Gaussian: 𝑓𝑔𝑎𝑢𝑠𝑠 𝑥 =
1

𝜎 2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2

• Beta:    𝑓𝑏𝑒𝑡𝑎 𝑥 =
𝑥𝛼−1(1−𝑥)𝛽−1

B(𝛼,𝛽)

x

f(x)

-2   -1    0    1     2
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The Gaussian function

𝑓𝑔𝑎𝑢𝑠𝑠 𝑥 =
1

𝜎 2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2

• Mean 𝜇 – center of distribution

• Standard deviation   𝜎 – width of distribution

• Which color is 𝜇=-2, 𝜎2=0.5? Which color is 𝜇=0, 𝜎2=0.2?

• 𝑁 𝜇1, 𝜎1
2 +𝑁 𝜇2, 𝜎2

2 = 𝑁 𝜇1 + 𝜇2, 𝜎1
2 + 𝜎2

2

-5   -4    -3   -2    -1     0    1     2     3     4     5

1

0.8

0.6

0.4

0.2

0

𝝁 = 𝟎,
𝝈𝟐 = 𝟏. 𝟎
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Calculus: finding the slope of a function

What is the minimum value of: f(x)=x2-5x+6

Find value of x where slope is 0

General rules: slope of f(x):  
𝑑

𝑑𝑥
𝑓 𝑥 = 𝑓 ′(𝑥)

•
𝑑

𝑑𝑥
𝑥𝑎 = 𝑎𝑥𝑎−1

•
𝑑

𝑑𝑥
𝑘𝑓(𝑥) = 𝑘𝑓′(𝑥)

•
𝑑

𝑑𝑥
𝑓 𝑥 + 𝑔 𝑥 = 𝑓′ 𝑥 + 𝑔′ 𝑥
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Calculus: finding the slope of a function

What is the minimum value of: f(x)=x2-5x+6

• f'(x)=

• What is the slope at x=5?

• What is the slope at x=-5?

• What value of x gives slope of 0?
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More on derivatives: 
𝑑

𝑑𝑥
𝑓 𝑥 = 𝑓′(𝑥)

•
𝑑

𝑑𝑥
𝑓 𝑤 = 0 -- w is not related to x, so derivative is 0

•
𝑑

𝑑𝑥
𝑓 𝑔(𝑥) =𝑔′(𝑥) ∙ 𝑓′(𝑔 𝑥 )

•
𝑑

𝑑𝑥
log𝑥 =

1

𝑥

•
𝑑

𝑑𝑥
𝑒𝑥 = 𝑒𝑥
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Programming in Matlab: Data types

• Numbers: -8.5, 0, 94

• Characters: 'j', '#', 'K' - always surrounded by single quotes

• Groups of numbers/characters – placed in between [ ]
• [5 10 12; 3 -4 12; -6 0 0] - spaces/commas separate columns, 

semi-colons separate rows

• 'hi robot', ['h'  'i'  ' '  'robot'] - a collection of characters can be grouped 
inside a set of single quotes
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Matrix indexing
• Start counting at 1

matrix1=[4 8 12; 6 3 0; -2 -7 -12];

matrix1(2,3) -> 0

• Last row/column can also be designated by keyword “end”

matrix1(1,end) -> 12

• Colon indicates counting up by increment
• [2:10] -> [2 3 4 5 6 7 8 9 10]

• [3:4:19] -> [3 7 11 15 19]

matrix1(2,1:3) -> [6 3 0]
29

Vector/matrix functions

vec1=[9, 3, 5, 7]; matrix2=[4.5 -3.2; 2.2 0; -4.4 -3];

• mean mean(vec1) -> 6

• min min(vec1) -> 3

• max max(vec1) -> ?

• std std(vec1) -> 2.58

• length length(vec1) -> ?

• size size(matrix2) -> [3 2];

30
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Extra syntax notes

• Semicolons suppress output of computations:

> a=4+5

a =

9

> b=6+7;

>

• % starts a comment for the line (like // in C++)

• .* ,  ./ ,  .^  performs element-wise arithmetic
>c=[2 3 4]./[2 1 2]

>c =

[1    3    1]

>
31

Variables

• who, whos – list variables in environment

• Comparisons:
• Like C++: ==, <, >, <=, >=

• Not like C++: not ~, and &, or |

• Conditions:
• if(...),    end;

• Loops:
• while(...),    end;

• for x=a:b,    end;
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Data: .mat files

• save filename variableNames

• load filename

• Confirm correct directories:
• pwd – show directory  (print working directory)

• cd – change directory

• ls – list files in directory
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Define new functions: .m files

• Begin file with function header:

function output = function_name(input)

statement1;

statement2;

⋮

• Can allow multiple inputs/outputs

function [output1, output2] = function_name(input1, input2, input3)
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Linear algebra: data features

• Vector – list of numbers:
each number describes
a data feature

• Matrix – list of lists of numbers:
features for each data
point

Wolf 12

Lion 16

Monkey 14

Broker 0

Analyst 1

Dividend 1

⁞ d ⁞

# of word 
occurrences

Document 1

8

10

11

1

0

1

⁞

Document 2

0

2

1

14

10

12

⁞

Document 3
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Feature space

• Each data feature defines a dimension in space

Wolf 12

Lion 16

Monkey 14

Broker 0

Analyst 1

Dividend 1

⁞ d ⁞

Document1

8

10

11

1

0

1

⁞

Document2

0

2

1

14

10

12

⁞

Document3

wolf

lio
n doc1

doc2

doc3

0 10 20

20

10

0
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The dot product

The dot product compares two vectors:

• 𝒂 =

𝑎1
⋮
𝑎𝑛

, 𝒃 =
𝑏1
⋮
𝑏𝑛

𝒂 ∙ 𝒃 =  𝑖=1
𝑛 𝑎𝑖𝑏𝑖 = 𝒂

𝑇𝒃

0 10 20

20

10

0

𝟓
𝟏𝟎
∙
𝟏𝟎
𝟏𝟎
= 𝟓 × 𝟏𝟎 + 𝟏𝟎 × 𝟏𝟎

= 𝟓𝟎 + 𝟏𝟎𝟎 = 𝟏𝟓𝟎
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The dot product, continued

Magnitude of a vector is the sum of the squares of the elements

𝒂 =  𝑖 𝑎𝑖
2

If 𝒂 has unit magnitude, 𝒂 ∙ 𝒃 is the “projection” of 𝒃 onto 𝒂

0 1 2

2

1

0

0.71
0.71
∙
1.5
1
= .71 × 1.5 + .71 × 1

≈ 1.07 + .71 = 1.78

𝒂 ∙ 𝒃 = 

𝑖=1

𝑛

𝑎𝑖𝑏𝑖

0.71
0.71
∙
0
0.5
= .71 × 0 + .71 × 0.5

≈ 0 + .35 = 0.35 38

Multiplication

• Scalar ×matrix: Multiply each element of the matrix by the scalar value

𝑐

𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑚

=

𝑐 𝑎11 ⋯ 𝑐 𝑎1𝑚
⋮ ⋱ ⋮
𝑐 𝑎𝑛1 ⋯ 𝑐 𝑎𝑛𝑚

• Matrix × column vector: dot product of each row with vector
𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑚

𝑏1
⋮
𝑏𝑚

=
𝒂1 ∙ 𝒃
⋮
𝒂𝑛 ∙ 𝒃

“scalar” means single numeric value 
(not a multi-element matrix)

𝒃

−𝒂1 −
⋮
−𝒂𝑛 −
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Multiplication

• Matrix ×matrix: Compute dot product of each left row and 
right column

−𝒂1 −
⋮
−𝒂𝑛 −

| |
𝒃1 ⋯ 𝒃𝑚
| |

=
𝒂1 ∙ 𝒃1 ⋯ 𝒂1 ∙ 𝒃𝑚
⋮ ⋱ ⋮

𝒂𝑛 ∙ 𝒃1 ⋯ 𝒂𝑛 ∙ 𝒃𝑚

NB: Matrix dimensions need to be compatible for valid multiplication –
number of rows of left matrix (A) = number of columns of right matrix (B)
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