What is machine learning

- Finding patterns in data
- Adapting program behavior
- Advertise a customer's favorite products
- Search the web to find pictures of dogs
- Change radio channel when user says "change channel"

Advertise a customer's favorite products

Search the web to find pictures of dogs

What's covered in this class

- Theory: describing patterns in data
- Probability
- Linear algebra
- Calculus/optimization
- Implementation: programming to find and react to patterns in data
- Matlab
- Data sets of text, speech, pictures, user actions, neural data...

Outline of topics

- Groundwork: probability, slopes, and programming

Classification overview: Training, testing, and overfitting

- Discriminative and generative methods: Regression vs Naïve Bayes
- Classifier theory: Separability, information criteria
- Support vector machines: Slack variables and kernels
- Expectation-Maximization: Gaussian mixture models
- Dimensionality reduction: Principle Component Analysis
- Graphical models: Bayes nets, Hidden Markov model

Resources

- Office hours: Wednesday 3-4pm and by appointment
- Course web site: http://storm.cis.fordham.edu/leeds/cisc5800
- Fellow students
- Textbooks/online notes
- Matlab

What you need to do in this class

- Class attendance
- Assignments: homeworks (4) and final project
- Exams: midterm and fina

Outline of topics

- Groundwork: probability, slopes, and programming

Classification overview: Training, testing, and overititing

- Discriminative and generative methods: Regression vs Naive Bayes

Classifier theory: Separability, information criteria

- Support vector machines: slack variables and kernels
- Expectation-Maximization: Gaussian mixture models
- Dimensionality reduction: Principle Component Analysis
- Graphical models: Bayes nets, Hidden Markov model

Probability
What is the probability that a child likes chocolate?

The "frequentist" approach:

- Ask 100 children
- Count who likes chocolate
- Divide by number of children asked

P ("child likes chocolate") $=\frac{85}{100}=0.85$
In short: $\mathrm{P}(\mathrm{C})=0.85 \quad \mathrm{C}=$ "child likes chocolate"

General probability properties

$\mathrm{P}(\mathrm{A})$ means "Probability that statement A is true"

- $0 \leq \operatorname{Prob}(\mathrm{A}) \leq 1$
- $\operatorname{Prob}(T r u e)=1$
- $\operatorname{Prob}($ False $)=0$

Random variables

A variable can take on a value from a given set of values:

- \{True, False\}
- \{Cat, Dog, Horse, Cow\}
- \{0,1,2,3,4,5,6,7\}

A random variable holds each value with a given probability To start, let us consider a binary variable

- $\mathrm{P}($ LikesChocolate $)=\mathrm{P}($ LikesChocolate $=$ True $)=0.85$

Addition rule
$\operatorname{Prob}(\mathrm{A}$ or B$)=$???

C="child likes chocolate" I="child likes ice cream"

Name	Chocolate?	Ice cream?
Sarah	Yes	No
Melissa	Yes	Yes
Darren	No	No
Stacy	Yes	Yes
Brian	No	Yes

Complements

C="child likes chocolate"

What is the probability that a child DOES NOT like chocolate?

Complement: $\mathrm{C}^{\prime}=$ "child doesn't like chocolate"
$P\left(C^{\prime}\right)=$

In general: $\mathrm{P}\left(\mathrm{A}^{\prime}\right)=$

Joint and marginal probabilities
Across 100 children:

- 55 like chocolate AND ice cream
- 30 like chocolate but not ice cream

Corrected
 slide

- 5 like ice cream but not chocolate
- 10 don't like chocolate nor ice cream

Prob(I) $=$
Prob(C) =
Prob(I,C)

Independence

If the truth value of B does not affect the truth value of A :

- $P(A \mid B)=P(A)$

Equivalently

- $P(A, B)=P(A) P(B)$

Multi-valued random variables

A random variable can hold more than two values, each with a given probability

- P (Animal $=$ Cat $)=0.5$
- $P($ Animal $=$ Dog $)=0.3$
- P (Animal=Horse)=0.1
- $P($ Animal $=$ Cow $)=0.1$

Probability rules: multi-valued variables
For a given variable A :

- $\mathrm{P}\left(A=a_{i}\right.$ and $\left.A=a_{j}\right)=0$ if $i \neq j$
- $\sum_{i} P\left(A=a_{i}\right)=1$
- $P\left(A=a_{i}\right)=\sum_{j} P\left(A=a_{i}, B=b_{j}\right)$

cat	animal
horse	dog

Continuous random variables

A random variable can take on a continuous range of values

- From 0 to 1
- From 0 to ∞
- From $-\infty$ to ∞

Probability expressed through a
"probability density function" $\mathbf{f}(\mathbf{x})$
$P(A \epsilon[a, b])=\int_{a}^{b} f(x) d x$
"Probability A has value between i and j is area under the curve of f between i and j

The Gaussian function
$f_{\text {gauss }}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

- Mean μ - center of distribution	0										
-5	-4	-3	-2	-1	0	1	2	3	4	5	
- Standard deviation σ-width of distribution
- Which color is $\mu=-2, \sigma^{2}=0.5$? Which color is $\mu=0, \sigma^{2}=0.2$?
$\cdot N\left(\mu_{1}, \sigma_{1}^{2}\right)+N\left(\mu_{2}, \sigma_{2}^{2}\right)=N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$

Calculus: finding the slope of a function

What is the minimum value of: $f(x)=x^{2}-5 x+6$ Find value of x where slope is 0

General rules: slope of $\mathrm{f}(\mathrm{x}): \frac{d}{d x} f(x)=f^{\prime}(x)$

- $\frac{d}{d x} x^{a}=a x^{a-1}$
- $\frac{d}{d x} k f(x)=k f^{\prime}(x)$

- $\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x)$

Calculus: finding the slope of a function

What is the minimum value of: $f(x)=x^{2}-5 x+6$

- $f^{\prime}(x)=$
-What is the slope at $x=5$?
- What is the slope at $x=-5$?
- What value of x gives slope of 0 ?

More on derivatives: $\frac{d}{d x} f(x)=f^{\prime}(x)$

- $\frac{d}{d x} f(w)=0 \quad--\mathrm{w}$ is not related to x , so derivative is 0
- $\frac{d}{d x}(f(g(x)))=g^{\prime}(x) \cdot f^{\prime}(g(x))$
- $\frac{d}{d x} \log x=\frac{1}{x}$
- $\frac{d}{d x} e^{x}=e^{x}$

Programming in Matlab: Data types

- Numbers: -8.5, 0, 94
-Characters: 'j', '\#', 'K' - always surrounded by single quotes
- Groups of numbers/characters - placed in between []
- [5 10 12; 3-4 12;-60 0] - spaces/commas separate columns,
- 'hi robot' ['h' 'i' ' ' 'robot'] semi-colons separate rows
- a collection of characters can be grouped inside a set of single quotes

Matrix indexing

- Start counting at 1
matrix1=[4 8 12; 6 3 0; -2 -7-12];
matrix1 $(2,3)->0$
- Last row/column can also be designated by keyword "end" matrix1(1,end) -> 12
- Colon indicates counting up by increment
- [2:10] -> [2 3456789 10]
- [3:4:19] -> [3 71115 19]
matrix1(2,1:3) $->\left[\begin{array}{lll}6 & 3 & 0\end{array}\right]$

Vector/matrix functions

vec1=[9, 3, 5, 7]; matrix2=[4.5-3.2; 2.2 0; -4.4-3];

- mean mean(vec1) -> 6
- min $\quad \min (v e c 1)->3$
- max max(vec1) -> ?
- std std(vec1) -> 2.58
- length length(vec1) -> ?
- size size(matrix2) -> [3 2];

Extra syntax notes

- Semicolons suppress output of computations:

$$
>a=4+5
$$

$a=$
9 $>b=6+7$;
\% starts a comment for the line (like // in C++)
-.*, ./ , ^^ performs element-wise arithmetic $>c=\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$./[2 1212$]$

$$
>c=
$$

$$
>\left[\begin{array}{lll}
1 & 3 & 1
\end{array}\right]
$$

>

Data: .mat files

- save filename variableNames
- load filename
- Confirm correct directories
- pwd - show directory (print working directory)
- cd - change directory
- Is - list files in directory

Variables

- who, whos - list variables in environment
- Comparisons:
- Like C++: ==, <, >, <=, >=
- Not like C++: not \sim, and $\&$, or
- Conditions:
- if(...), end;

Loops:

- while(...), end;
- for $x=a: b$, end;

Define new functions: .m files

- Begin file with function header:
function output = function_name(input)
statement1;
statement2;
:
- Can allow multiple inputs/outputs
function [output1, output2] = function_name(input1, input2, input3)

Linear algebra: data features

- Vector - list of numbers: each number describes a data feature
- Matrix - list of lists of numbers: features for each data point

Feature space

- Each data feature defines a dimension in space

The dot product

The dot product compares two vectors:
$\cdot \boldsymbol{a}=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right], \boldsymbol{b}=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]$
$\boldsymbol{a} \cdot \boldsymbol{b}=\sum_{i=1}^{n} a_{i} b_{i}=\boldsymbol{a}^{T} \boldsymbol{b}$

$$
\begin{aligned}
& {\left[\begin{array}{c}
5 \\
10
\end{array}\right] \cdot\left[\begin{array}{l}
10 \\
10
\end{array}\right]=5 \times 10+10 \times 10 } \\
&= 50+100=150
\end{aligned}
$$

Multiplication

 "scalar" means single numeric value (not a multi-element matrix)- Scalar \times matrix: Multiply each element of the matrix by the scalar value

$$
c\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 m} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n m}
\end{array}\right]=\left[\begin{array}{cccc}
c & a_{11} & \cdots & c \\
\vdots & a_{1 m} \\
\vdots & a_{n 1} & \cdots & c \\
\vdots \\
n
\end{array}\right]
$$

- Matrix \times column vector: dot product of each row with vector

The dot product, continued $\boldsymbol{a} \cdot \boldsymbol{b}=\sum_{i=1}^{n} a_{i} b_{i}$
Magnitude of a vector is the sum of the squares of the elements
$|\boldsymbol{a}|=\sqrt{\sum_{i} a_{i}^{2}}$
If \boldsymbol{a} has unit magnitude, $\boldsymbol{a} \cdot \boldsymbol{b}$ is the "projection" of \boldsymbol{b} onto \boldsymbol{a}

$$
\begin{aligned}
{\left[\begin{array}{c}
0.71 \\
0.71
\end{array}\right] \cdot\left[\begin{array}{c}
1.5 \\
1
\end{array}\right] } & =.71 \times 1.5+.71 \times 1 \\
& \approx 1.07+.71=1.78 \\
{\left[\begin{array}{c}
0.71 \\
0.71
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
0.5
\end{array}\right] } & =.71 \times 0+.71 \times 0.5 \\
& \approx 0+.35=0.35
\end{aligned}
$$

Multiplication

- Matrix \times matrix: Compute dot product of each left row and right column

$$
\left[\begin{array}{c}
-\boldsymbol{a}_{1}- \\
\vdots \\
-\boldsymbol{a}_{n}-
\end{array}\right]\left[\begin{array}{ccc}
\mid & & \mid \\
\boldsymbol{b}_{1} & \cdots & \boldsymbol{b}_{m} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\boldsymbol{a}_{1} \cdot \boldsymbol{b}_{1} & \cdots & \boldsymbol{a}_{1} \cdot \boldsymbol{b}_{m} \\
\vdots & \ddots & \vdots \\
\boldsymbol{a}_{n} \cdot \boldsymbol{b}_{1} & \cdots & \boldsymbol{a}_{n} \cdot \boldsymbol{b}_{m}
\end{array}\right]
$$

NB: Matrix dimensions need to be compatible for valid multiplication number of rows of left matrix $(\mathbf{A})=$ number of columns of right matrix (B)

