Dimensionality reduction

CISC 5800
Professor Daniel Leeds

The benefits of extra dimensions

- Finds existing complex separations between classes

Training vs. testing

- Training: learn parameters from set of data in each class
- Testing: measure how often classifier correctly identifies new data
- More training reduces classifier error ε
- More gradient ascent steps
- More learned feature
- Too much training causes
worse testing error - overfitting

Decreasing parameters

- Force parameter values to 0
- L1 regularization
- Support Vector selection
- Feature selection/removal
- Consolidate feature space
- Component analysis

Goal: High Performance, Few Parameters

- "Information criterion": performance/parameter trade-off
- Variables to consider:
- L likelihood of train data after learning
- \mathbf{k} number of parameters (e.g., number of features)
- m number of points of training data
- Popular information criteria:
- Akaike information criterion AIC: $\log (\mathrm{L})-\mathrm{k}$
- Bayesian information criterion BIC: $\log (\mathrm{L})-0.5 \mathrm{k} \log (\mathrm{m})$

Feature removal

- Start with feature set: $\mathrm{F}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right\}$
- Find classifier performance with set F : perform(F)
- Loop
- Find classifier performance for removing feature $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}$: $\operatorname{argmax}_{i}$ perform($\mathrm{F}-\mathrm{x}_{1}$)
- Remove feature that causes least decrease in performance: $\mathrm{F}=\mathrm{F}-\mathrm{X}$

Repeat, using AIC or BIC as termination criterion
AIC: $\log (\mathrm{L})-\mathrm{k}$
BIC: $\log (\mathrm{L})-0.5 \mathrm{k} \log (\mathrm{m})$

AIC testing: $\log (\mathrm{L})-\mathrm{k}$

Features	k (num features)	L (likelihood)	AIC
F	40	0.1	-42.3
$F-\left\{x_{3}\right\}$	39	0.03	-41.5
$F-\left\{X_{3}, X_{2}\right\}$	38	0.005	-41.3
$F-\left\{x_{3}, X_{24}, X_{32}\right\}$	37	0.001	-40.9
$F-\left\{x_{3}, X_{24}, X_{32}, X_{15}\right\}$	36	0.0001	-41.2

Feature selection

- Find classifier performance for just set of 1 feature: argmax ${ }_{i}$ perform ($\left\{\mathrm{x}_{\mathrm{i}}\right\}$)
- Add feature with highest performance: $\mathrm{F}=\left\{\mathrm{x}_{\mathrm{i}}\right\}$
- Loop
- Find classifier performance for adding one new feature argmax ${ }_{i}$ perform ($F+\left\{\mathrm{x}_{\mathrm{i}}\right\}$)
- Add to F feature with highest performance increase: $F=F+\left\{x_{i}\right\}$

Repeat, using AIC or BIC as termination criterion

Defining new feature axes

- Map data onto new dimension $\boldsymbol{u}_{\mathbf{1}}$

$\theta-\theta(9-\theta-x \times x \rightarrow$

Defining data points with new axes

Component analysis

Each data point \boldsymbol{x}^{i} in D can be reconstructed as sum of components \boldsymbol{u} :

- $\boldsymbol{x}^{i}=\sum_{q=1}^{T} z_{q}^{i} \boldsymbol{u}_{\boldsymbol{q}}$
- z_{q}^{i} is weight on $q^{\text {th }}$ component to reconstruct data point $\mathbf{x}^{\mathbf{i}}$

Component analysis: examples

Components

Data

Component analysis: examples

"Eigenfaces" - learned from set of face images

Principle component analysis (PCA)

Evaluating components

- Components learned in order of descriptive power
- Compute reconstruction error for all data by using first v components:

$$
\text { error }=\sum_{i}\left(\sum_{j}\left(x_{j}^{i}-\sum_{q=1}^{v} a_{q}^{i} \boldsymbol{u}_{q, j}\right)^{2}\right)
$$

