Follow-ups to HMMs Graphical Models

Semi-supervised learning

CISC 5800 Professor Daniel Leeds

Approaches to learning/classification

For classification, find highest probability class given features • $P(x_1, ..., x_n | \, y {=} ?)$

Approaches:

- Learn/use function(s) for probability
 - P(rumble|Y=dog)= $N(\mu_{dog}, \sigma_{dog})$

Joint probability over N features

Problem with learning table with N features:

• If all dependent, exponential number of model parameters

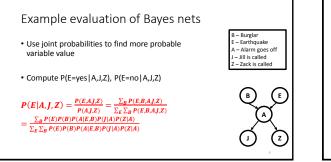
Naïve Bayes – all independent • Linear number of model parameters

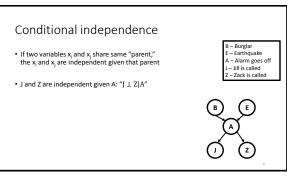
What if not all features are

independent?

Burglar breaks in	Alarm goes off	Jill gets a call	Zack gets a call	P(A,J,Z B)
Y	Y	Y	Y	0.3
Y	Y	γ	N	0.03
Y	Y	N	Y	0.03
Y	Y	N	N	0.06
		:		
				3

Bayes nets: conditional independence • In Naïve Bayes: $P(x_1,x_2,x_3|y) = P(x_1|y)P(x_2|y)P(x_3|y)$ • In Bayes nets, some variables depend on other variables • P(B, E, A, J, Z) = P(B) P(E) P(A|B,E) P(J|A) P(Z|A) • In general for Bayes nets: • $P(x_1,...,x_n) = \prod_l P(x_l|Pa(x_l))$ • Pa(x) are the "parents" of x_i – the variables x_i is conditioned on





HMM: a kind-of example of Bayes nets

• $P(q_1,q_2,q_3,o_1,o_2,o_3) =$

Back to Expectation-Maximization

- Problem: Uncertain of yⁱ (class), uncertain of θ^i (parameters)
- Solution: Guess yⁱ, deduce θ^i , re-compute yⁱ, re-compute θ^i ... etc. OR: Guess θ^i , deduce yⁱ, re-compute θ^i , re-compute yⁱ Will converge to a solution
- E step: Fill in expected values for missing variables
- M step: Regular MLE given known and filled-in variables Also useful when there are holes in your data

Types of learning

Supervised: each training data point has known features and class label • Most examples so far

Unsupervised: each training data point has known features, but no class label

• ICA - each component meant to describe subset of data points

Semi-supervised: each train data point has known features, but only some have class labels

• Related to expectation maximization

Document classification example

Two classes: {farm, zoo}

- 5 labeled zoo articles, 5 labeled jungle articles
- 100 unlabeled training articles

Features: [% bat, % elephant, % monkey, % snake, % lion, %penguin] • E.g., % batⁱ = #{wordsInArticleⁱ==bat}/#{wordsInArticleⁱ}

Logistic regression classifier

Iterative learning

- ${\scriptstyle \bullet}$ Learn ${\scriptstyle w}$ with labeled training data
- Use classifier to assign labels to originally unlabeled training data
- Learn ${\boldsymbol{\mathsf{w}}}$ with known and newly-assigned labels
- · Use classifier to re-assign labels to originally unlabeled training data

Converges to a stable answer