Review sheet

Derivatives: Rules on my slides

Logs: Rules on my slides

Linear algebra: $\mathbf{a}^\mathsf{T}\mathbf{b}$ – also known as dot product of \mathbf{a} and \mathbf{b} or projection of \mathbf{b} onto \mathbf{a} , magnitude

of a

Probability: Conditional, joint, marginal, Bayes rule $P(A|B) = \frac{P(B|A)P(A)}{P(B)} \propto P(B|A)P(A)$ Gaussian distribution

Training and testing sets, training and testing error

Performing classification: take class that has highest probability (Bayes) or "probability" (logistic regression), or based on whether binary classifier output is positive or negative (SVM)

Generative classifiers:

Binary coin flips:

Likelihood: $p^{|H|}(1-p)^{|T|}$

Prior: Beta distribution – role of α and β parameters

MLE:
$$p = \frac{|H|}{|H| + |T|}$$

MLE:
$$p=rac{|H|}{|H|+|T|}$$
MAP: $p=rac{|H|+lpha-1}{|H|+|T|+lpha-1+eta-1}$

Multi-variate binary classification:

 θ_{ik}^{j} is probability ith feature has value x_k, given the class is y_j: P(X_i=x_j|Y=y_j)

 θ^{j} is probability class is $y_j : P(Y=y_j)$

MLE:
$$P(X_i = x_k | Y = y_j; \theta_{ik}^j) = \frac{\#D(X_i = x_k \land Y = y_j)}{\#D(Y = y_j)}$$

$$P(Y = y_i; \theta^j) = \frac{\#D(Y = y_j)}{\|P\|}$$

$$P(Y = y_j; \theta^j) = \frac{\#D(Y = y_j)}{|D|}$$
MAP: $P(\theta^j_{ik} | X_i = x_k, Y = y_j) = \frac{\#D(X_i = x_k \land Y = y_j) + (\beta_j - 1)}{\#D(Y = y_j) + \sum_m (\beta_m - 1)}$

$$P\left(\theta^{j} \mid Y = y_{j}\right) = \frac{\#D(Y = y_{j}) + (\beta_{j} - 1)}{|D| + \sum_{m} (\beta_{m} - 1)}$$

Counting parameters:

Bayes with binary variables and two classes: 2x(2ⁿ-1) Naïve Bayes with binary variables and two classes: 2xn

Sigmoid:
$$g(h) = \frac{1}{1+e^{-h}}$$

Logistic regression: Classes 0 and 1 (or multi-class, see below)

$$p(y = 1|x; \theta) = g(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$
$$p(y = 0|x; \theta) = 1 - g(\mathbf{w}^T \mathbf{x}) = \frac{e^{-\mathbf{w}^T \mathbf{x}}}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

MLE update:

For each data point (y^i, \mathbf{x}^i) , update each weight \mathbf{w}_i : $w_i \leftarrow w_i + \varepsilon x_i^i (y^i - g(\mathbf{w}^T \mathbf{x}^i))$

MAP update:

L1:
$$w_j \leftarrow w_j + \varepsilon \left[x_j^i (y^i - g(\mathbf{w}^T \mathbf{x}^i)) - \frac{\operatorname{sign}(w_j)}{\lambda N} \right]$$

L2: $w_j \leftarrow w_j + \varepsilon \left[x_j^i (y^i - g(\mathbf{w}^T \mathbf{x}^i)) - \frac{w_j}{\lambda N} \right]$

Multi-class logistic regression:

For each data point (yi,xi), update each weight wi:

$$w_{j,k} \leftarrow w_{j,k} + \varepsilon x_j^i \left(\delta(y^i - k) - p(y^i = k | \mathbf{x}^i; \theta) \right)$$
$$\delta(a) = \begin{cases} 1 & \text{if } a = 0 \\ 0 & \text{otherwise} \end{cases}$$

Number of parameters: M classes, N features – (N+1)x(M-1) regression parameters

Support vector machines: Classes -1 and +1

Maximize margin, minimize $\mathbf{w}^\mathsf{T}\mathbf{w}$ subject to $\mathbf{w}^\mathsf{T} + b \geq 1$ and $\mathbf{w}^\mathsf{T} + b \leq -1$

Solution to max-margin problem: $w = \sum_i \alpha^i \ x^i y^i \quad \alpha^i \ge 0 \ \forall i \quad \sum_i \alpha^i \ y^i = 0$

Slack variables – penalizing errors

$$\operatorname{argmin}_{\mathsf{w},\mathsf{b}} \boldsymbol{w}^T \boldsymbol{w} + \mathcal{C} \sum_i \varepsilon_i \quad \text{subject to } \boldsymbol{w}^T \boldsymbol{x}^+ + b \geq 1 - \varepsilon_i \text{ and } \quad \boldsymbol{w}^T \boldsymbol{x}^- + b \leq -1 + \varepsilon_i$$

$$\varepsilon_i \geq 0 \quad \forall i$$

Mapping functions: defining higher dimensions to achieve linear separation $\sum_i \alpha_i y_i \varphi(x^i)^T \varphi(x^j) + b$

Represent dot product as kernel: $K(x^i, x^j) = \varphi(x^i)^T \varphi(x^j)$

M	ΙF	VS.	M	AP

Number of parameters:

Deriving parameter estimates: log-probability, set derivative to 0 (our Bayesian examples so far) or change parameter in direction of derivative (our logistic regression examples so far)

Gaussian

MLE

MAP