CISC 5800 - Machine Learning

Homework 0
Due September 11
Highly recommend you complete by September 11, 2017
Submit Parts A and B on paper at the start of class September 18;
Submit Part C on your erdos account by 11:00pm September 18 (see Part C instructions below).

Much of this homework should be review of concepts you have learned prior to this semester in algebra, probability, and programming.

A. Probability:

First probability table corrected below on Sept 11, 11pm.
Consider the following joint probability table:

A	B	$P(A, B)$
0	0	0.2
0	1	0.1
1	0	0.3
1	1	0.4

1. What is $P(A=1, B=1)$?
2. What is $P(B=0)$?
3. What is $P(A=1 \mid B=0)$?
4. What is $P(A=1$ or $B=0)$?

Consider the following joint probability table:

A	B	C	$P(A, B, C)$
0	0	0	0.08
0	0	1	0.40
0	1	0	0.24
0	1	1	0.08
1	0	0	0.02
1	0	1	0.10
1	1	0	0.06
1	1	1	0.02

5. Are variables A and B independent?

6 . Are variables B and C independent?

(Potentially NEW material)

Typo in Question 10 corrected on Sept 11, 11pm.
Consider the multi-valued random variables N and M, where N is an animal and M is the attitude of the animal.

- N can take on the values: cat, dog, zebra, pony
- M can take on the values: hostile, friendly, shy

Which of the following represent a single probability value, and which represent a function (specifically, a "probability density function"?
7. P(N)
10. $\mathrm{P}(\mathrm{M} \mid \mathrm{N}=$ pony $)$
9. $P(M=$ shy $)$
10. $\mathrm{P}(\mathrm{M}=$ friendly $\mid \mathrm{N}=$ zebra $)$

B. Algebra/Calculus

Express a as a function of b.
Example question: $2 b=5 a+3$
Example answer: $a=\frac{2 b-3}{5}$

1. $a^{2}=4 b^{2}+2 a+a^{2}$
2. $b^{2}+4 a=4 b+16$
3. $5 a=4(b-6 a)$

Consider the function $f(x)=3 x^{2}-7$.
4. What is the value of $f(x)$ when $x=4$?
5. What is the derivative of $f(x)$?

Consider the function $g(z)=2\left(z^{3}-1\right)^{2}$
6 . What is the value of $g(z)$ when $z=-2$?
7. What is the value of $g(z)$ when $z=5$?

C. Programming:

Use a programming language you know to perform the following tasks. Provide the code and tell me what language you are using. I most recommend you use Matlab, C++, or Python, if you already know one of these languages. If you do not, you must e-mail me for my approval to use another language. The code for questions 2 and 3 each must use at least one loop. You may not use the pre-defined Matlab trace function.

Matlab code is NOT required for this assignment, but is permitted if you wish.

Submission instructions for Part C: Log into your erdos account (erdos.dsm.fordham.edu) you can use Terminal on Mac or Putty on Windows (see Resources section on our course web site). Inside your folder called "private"

Linux command: cd private
create a folder called "CIS5800".
Linux command: mkdir CIS5800
Save the three programs, hobbitDetector, runningProduct, and trace, inside private/CIS5800/. As course instructor, I will be able to access your files inside private/CIS5800/. You must have the necessary files in the proper directory by September 18 at 11:00pm.

You are welcome to write your programs on your local computer (or on erdos). To transfer files from your local computer to erdos, you may use a program such as FileZilla https://filezilla-project.org/. Make sure you transfer your files into your private/CIS5800/ directory!

If you have trouble accessing erdos for this assignment, you may e-mail me your programs by September 18, 11:00pm - however, we will use erdos for code submission throughout the rest of the semester, so you must resolve your erdos troubles by the time the next homework is due!

1. Write a function called reasonableDetector that takes in a real number. The function will return 1 (meaning "true, this number is reasonable") if number the height is between 10 and 100. The function will return 0 (meaning, "false, the number is NOT reasonable") if the input is less than 10 or greater than 100.
2. Write a function called sumSquared that takes in a list/array/vector of numbers and returns the sum of the squares of all the numbers. For example, if you provide the list $\{2,-2,4,5\}$, the output is $2^{2}+(-2)^{2}+4^{2}+5^{2}=4+4+16+25=49$. For this question, use a loop.
3. Write a function called trace that takes in a two-dimensional array/list/matrix and returns the trace - the sum of the elements in the first row, first column; second row, second column; third row, third column; etc. For example, the trace of the list $\{\{1,2,3\},\{4,5,6\},\{7,8,9\}\}$ is 15 $(1+5+9=15)$. The trace of the list $\{\{1,2,3,4\},\{5,6,7,8\},\{9,10,11,12\},\{13,14,15,16\}\}$ is 34 $(1+6+11+18=34)$. You may assume the maximum size of the input is 6 rows by 6 columns.
