

What's covered in this class

- Theory: describing patterns in data
 - Probability
 - Linear algebra
 - Calculus/optimization
- Implementation: programming to find and react to patterns in data
 - Popular and successful algorithms
 - Matlab
 - Data sets of text, speech, pictures, user actions, neural data...

Outline of topics

- Groundwork: probability and slopes
- Classification overview: Training, testing, and overfitting
- Basic classifiers: Naïve Bayes and Logistic Regression
- Advanced classifiers: Neural networks and support vector machines

Deep learning Kernel methods

- Dimensionality reduction: Feature selection, information criteria
- Graphical models: Bayes Nets and Hidden Markov Model
- Expectation-Maximization

What you need to do in this class

- Class attendance
- Assignments: homeworks (4) and final project
- Exams: midterm and final
- Don't cheat
 - You may discuss homeworks with other students, but your submitted work must be your own. Copying is not allowed.

Resources

Matlab

- Office hours: Monday 4-5pm and by appointment
- Course web site: http://storm.cis.fordham.edu/leeds/cisc5800
- Fellow students
- Textbooks/online notes

Andrew Ng's Stanford course notes CS229 Machine Learning Autumn 2016

Probability and basic calculus

Probability and basic calculus

Probability

What is the probability that a child likes chocolate?

Ask 100 childrenCount who likes chocolate

- Divide by number of children asked
- Divide by number of children asked

P("child likes chocolate") = $\frac{85}{100}$ = 0.85 In short: P(C)=0.85 C="child lik

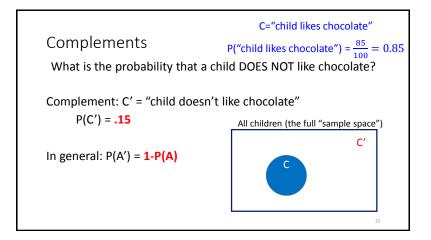
 $\frac{Sarah}{Melissa} \qquad \frac{Yes}{Yes}$ ren asked $\frac{B5}{100} = 0.85$ C="child likes chocolate"

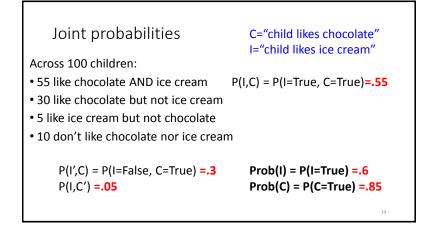
Chocolate?

Name

General probability properties P(A) means "Probability that statement A is true" • 0≤Prob(A) ≤1 • Prob(True)=1 • Prob(False)=0

3

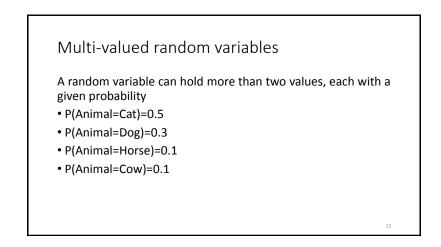

Random variables

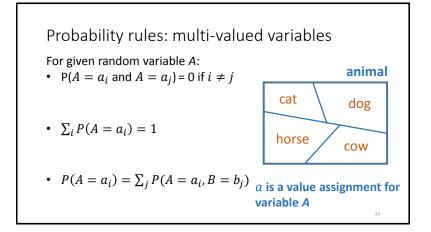

A variable can take on a value from a given set of values:

- {True, False}
- {Cat, Dog, Horse, Cow}
- {0,1,2,3,4,5,6,7}

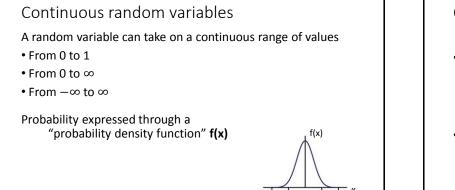
A random variable holds each value with a given probability Example: **binary variable** LikesChocolate

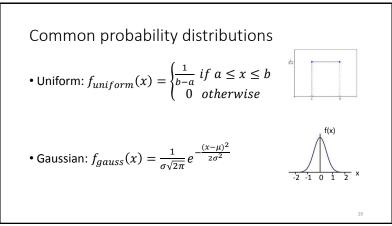
• P(LikesChocolate) = P(LikesChocolate=True) = 0.85

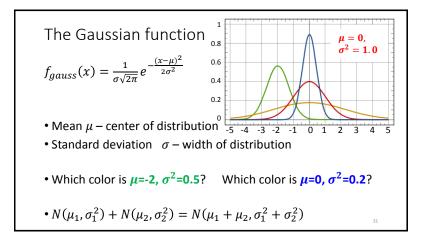

Marginal and conditional probabilities For two **binary** random variables A and B • P(A) = P(A,B)+P(A,B') = P(A=True, B=True) + P(A=True, B=False) • P(B) = P(A,B)+P(A',B) For **marginal probability** P(X), "marginalize" over all possible values of the other random variables • Prob(C|I) : Probability child likes chocolate given s/he likes ice cream $P(C|I) = \frac{P(C,I)}{P(I)} = \frac{P(C,I)}{P(C,I)+P(C',I)}$

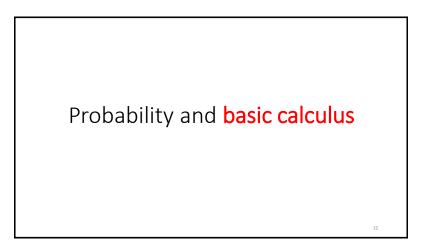

Independence

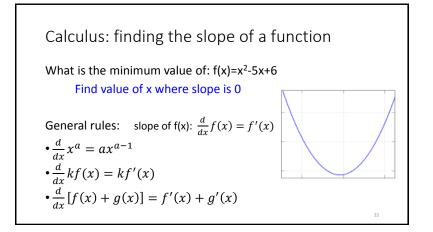
If the truth value of B does not affect the truth value of A, we say A and B are **independent**.

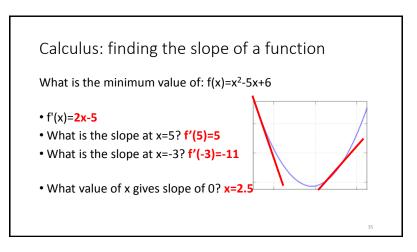

- P(A | B) = P(A)
- P(A,B) = P(A) P(B)

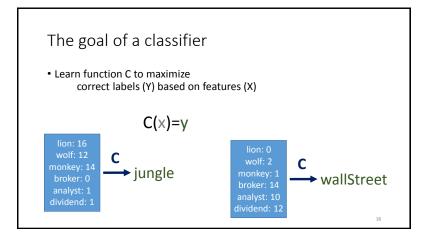

22

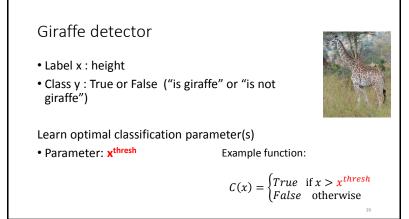


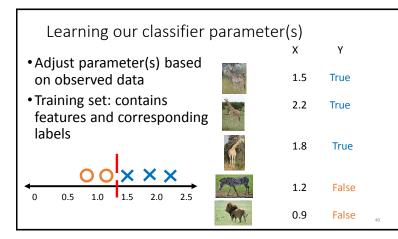


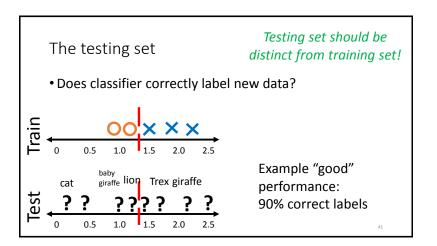

Grade	Honor-Student	P(G,H)
А	False	0.05
В	False	0.05
С	False	0.05
D	False	0.1
А	True	0.3
В	True	0.2
С	True	0.15
D	True	0.1
	A B C D A B C	AFalseBFalseCFalseDFalseATrueBTrueCTrue

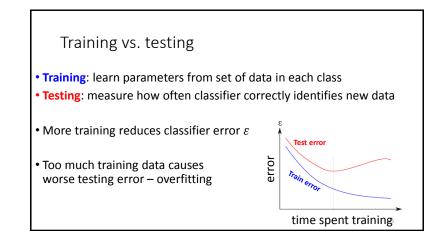









More on derivatives: $\frac{d}{dx}f(x) = f'(x)$ • $\frac{d}{dx}f(w) = 0$ -- w is not related to x, so derivative is 0 • $\frac{d}{dx}(f(g(x)))=g'(x) \cdot f'(g(x))$ • $\frac{d}{dx}\log x = \frac{1}{x}$ • $\frac{d}{dx}e^x = e^x$



Be careful with your training set

- What if we train with only baby giraffes and ants?
- What if we train with only T rexes and adult giraffes?

42

