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Classifying with probabilities

Example goal: Determine is it cloudy out
* Available data: Light detector: x € [0,25]
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This is Maximum Likelihood classification




Incorporating prior probability

* Define prior probabilities for each class P(y) = P(y, 0y)
Probability of class y same as probability of parameters u,, o,

* “Posterior probability” estimated as likelihood X prior :
P(x|uy, Uygp(#y' Uy‘

 Classify as argmax,,P(x|uy, gy, ) P(wy, 0y)

* Terminology: 1, g, are “parameters.” In general use 6
Here: 8y, = {u,, ay} . “Posterior” estimate is P(x|6y) P(Gy)

Probability review: Bayes rule

Recall:  P(AIB) = @
(B)
and: P(4,B) = P(BIA)P(4) The true
posterior
P(B|A) P(A
o P(AIR) = ZEO I |

P(DI6y) P(8y)

Equivalently:  P(y|x) = P(8,|x) = P(6,|D) o)

The posterior estimate

argmax P(0,|D) «< P(D|6,)P(6,)
ay

Posterior o Likelihood x Prior o - means proportional
We “ignore” the P(D) denominator
because D stays same while comparing

different classes (y represented by 6,)

Typical classification approaches

MLE — Maximum Likelihood: Determine parameters/class
which maximize probability of the data
argmax P(D|0y)
9}’

MAP — Maximum A Posteriori: Determine parameters/class
that has maximum probability

argmax P(9y|D)
0}’
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Incorporating a prior

Three classes:
Y={Cloudy, Non-Cloudy, Eclipse}

P(Cloudy)=0.4

P(Non-Cloudy)=0.4 x=9

IP(x=9[Cloudy) P(Cloud) =0.12x.4 = .048

P(Eclipse)=0.2

P(x=9| Eclipse) P(Eclipse)=0.16x.2 = .032

P(x=9|Non-Cloud) P(Non-Cloud) = 0.02x.4 = 0.008

Bernoulli distribution — coin flips

We have three coins with known biases (favoring heads or tails)
How can we determine our current coin?

Flip K times to see which bias it has

Data (D): {HHTH, TTHH, TTTT}  Bias (6,): p, probability of H for coin y

P(D|6y) = (1 = p,)" HI - # heads, |T| -# tails

Bernoulli distribution — reexamined
P(D|6y) = pl1(1 —p,) " IHI - # heads, |T| -# tails

0 if tails on flip k
1 if heads on flip k

P(0l6y) = [ | pi(1=p,) =

More rigorously: in K trials, side;, =

Optimization: finding the maximum likelihood

parameter for a fixed class (fixed coin)

arggnaxP(D|9y) = p, - probability of Head

argmax pJ,Hl (1 - py)m
P

Equivalently, maximize log P(D|6,)
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The properties of logarithms

log(x)

et=beologh=a

a<beloga<logh
logab =loga +loghb

exp(x)

loga™ =nloga

Convenient when dealing with small probabili\tiés‘
+0.0000454 x 0.000912 = 0.0000000414 -> -10+-7 =-17

Optimization: finding zero slope

Location of maximum has slope 0 .
p - probability of Head

maximize log P(D|6)

argmax |H|logp + |T|log(1 —p): i N |
P

d /
d—lellogp+|T|log(1—p)=O

11l _ |
p 1-p

=0

Finding the maximum a posteriori
- P(8,|D) x P(D|6,)P(8,)
* Incorporating the Beta prior: 2

R )
B(a,p) '

PDF

P(6) =

argmax P(D|9y)P(9y) =
0

argmax log P(D|9y) +log P(6,)
0

MAP: estimating 8 (estimating p)
argmaxlog P(D|6) + log P(6)
arg;ax |H|logp + |T|log(1 —p) +
’ (a —1Dlogp + (B — Dlog(1 —p) —log(B(a, §))
l Set derivative to 0

[H] 17| +(a—1)_([)’—1)=
p 1-p p 1-p

0

A-pIH =pIT|+ A -p)la-1) —p(B-1) =0

|Hl + (@ -1 =(H+IT|+(@-D+ (B -D)p
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Intuition of the MAP result Multinomial distribution Classification

* What is mood of person in current minute? M={Happy, Sad}
* Measure his/her actions every ten seconds: A={Cry, Jump, Laugh, Yell}

Happy
Data (D): {LLILCY, JJLYJL, CCLLLJ,

~ H| + (e — 1)
Py S HI + (@a—D+IT[+ B -1

* Prior has strong influence when |H| and |T| small m. & 01 05
* Prior has weak influence when |H| and |T| large Bias (8,,): Probability table Jump 03 0.2

Laugh 0.5 0.1
*a > B means expect to find coins biased to heads Yell 0.1 0.2
* B > a means expect to find coins biased to tails P(D|6,) = (pC)'" (e )/ (pLavary I ey Yelt

Multinomial distribution — reexamined .
Learning parameters

|Laugh|

|Cry| 1 |
P(D|9y) = (pf,ry) Ty (p)]/ump) ump (p;augh) (p;,e”)lYelH

More rigorously: in K measures,

#D{A=a;\M=m}

MLE: P(A = ailM = m]) = pl = #D(M=m;}

0 iftrial, # Action Yy is prior
1 iftrial, = Action #D(A=aq;AM=m ) +(y;—1) probability of each
MAP: P(A = a;|M =m;) = #D(M=m)+Sm(rm-1) | acCtion class a,

. \O(trial=Action;)
Action
P(D|9y) = nk l_L (py l) P(Y = ;) #D(M=m)+(Bj-1)

8(trial, = Action) = {

IDI+Zm(Bm—1) By is prior
Classification: Given known likelihoods for each action, find mood probability of each
that maximizes likelihood of observed sequence of actions mood class m,

(assuming each action is independent in the sequence)
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Multiple multi-variate probabilities Naive bayes: Jazz 005 04
Mood based on Action, Tunes, F% Assuming independence of input features iap 2'; 23
Weather ry, Jazz, Sun s b nora

Cry,Jazz, Rain  0.024  0.025 argmax P(AT,W|0,) = [ iopey sad
. Sun 06 0.2
argmax P(A, T, W |0 : .
0, ( ) Cry, Rap, Snow  0.011  0.115 argmax P(4l6,)pP(T|6,)P(W|6,) R U
: MB Snow 0.3 0.3
I Wmd 005 02
L"%‘?’ ;nany entries in probability Laugh, Rap, Rain 0.042  0.007 How many entries in cry 0.1
aple: { probability tables? Jump 0.3 0.2
Yell, Opera, Wind 0.105  0.052 law
~ gh 05 0.1
# params = |[M|x(|A|x|T|x|W]-1) T o3

Benefits of Naive Bayes Typical Naive Bayes classification
Very fast learning and classifying: Ll:)lsz;::';l;:;f argmaxP(0y|D) - argmaxP(DlOy)P(By) P(By) prior class probability
0 0
* For multinomial problem: 1,1 is number of g ’
* Naive independence: learn |Y| x Y;(|X;| — 1) possible values for ith 1
parameters feature x

p(p|o,) =1;P(Xxi|6 here D =
* Non-naive: learn |Y| X ([];|X;| — 1) parameters (D16,) =T1; P(x"16y) where

: | is a list of feature values
xTL

e.g., x}=Action, x2=Tunes

Often works even if features are NOT independent

NB (Naive Bayes): Find class y with 6,, to maximize P(0y|D)




