Support Vector Machines

CISC 5800
Professor Daniel Leeds

Separating boundary, defined by w

- Separating hyperplane splits class 0 and class 1
- Plane is defined by line w perpendicular to plan
- Is data point \mathbf{x} in class 0 or class 1 ? $\mathbf{w}^{\top} \mathbf{x}+\mathrm{b}>0$ class 1
$\mathbf{w}^{\top} \mathbf{x}+\mathrm{b}^{\boldsymbol{\top}}<0$ class $_{2} 0$

But, where do we place the boundary?

Max margin classifiers

Maximum margin definitions
Classify as +1
if $w^{T} x+b \geq 1$

Support vector machine (SVM) optimization

 with slack variablesWhat if data not linearly separable?
$\operatorname{argmin}_{\mathrm{w}, \mathrm{b}} \boldsymbol{w}^{T} \boldsymbol{w}+C \sum_{i} \varepsilon^{i}$
subject to
$w^{T} x+b \geq 1-\varepsilon^{i} \quad$ for x in class 1
$\boldsymbol{w}^{T} x+b \leq-1+\varepsilon^{i} \quad$ for \mathbf{x} in class -1

$$
\varepsilon^{i} \geq 0 \quad \forall i
$$

Each error ε^{i} is penalized based on distance from separator

```
Support vector machine (SVM) optimization
with slack variables
Example: Linearly separable but with narrow margins
\mp@subsup{\operatorname{argmin}}{w,b}{}\mp@subsup{\boldsymbol{w}}{}{T}\boldsymbol{w}+C\mp@subsup{\sum}{i}{}\mp@subsup{\varepsilon}{}{i}
    subject to
\[
\begin{aligned}
w^{T} x+b \geq 1-\varepsilon^{i} & \text { for } \mathrm{x} \text { in class } 1 \\
\boldsymbol{w}^{T} \boldsymbol{x}+b \leq-1+\varepsilon^{i} & \text { for } \mathbf{x} \text { in class }-1 \\
\varepsilon_{i} \geq 0 & \forall i
\end{aligned}
\]
```


Hyper-parameters for learning

$$
\operatorname{argmin}_{\mathrm{w}, \mathrm{~b}} \boldsymbol{w}^{T} \boldsymbol{w}+C \sum_{i} \varepsilon_{i}
$$

Optimization constraints: C influences tolerance for label errors versus narrow margins

$$
w_{j} \leftarrow w_{j}+\varepsilon \boldsymbol{x}_{j}^{i}\left(y^{i}-g\left(w^{T} \boldsymbol{x}^{i}\right)\right)-\frac{w_{j}}{\lambda}
$$

Gradient ascent:
$-\varepsilon$ influences effect of individual data points in learning

- T number of training examples, L number of loops through data balance learning and over-fitting
Regularization: λ influences the strength of your prior belief

Hyper-parameters to learn

Classifying with additional dimensions
Note: More dimensions makes it easier to separate T
training points: training error minimized, may risk over-fit
Each data point $\boldsymbol{x}^{\boldsymbol{i}}$ has N features (presuming classify with $\boldsymbol{w}^{\top} \boldsymbol{x}^{\boldsymbol{i}+\boldsymbol{b}}$)
Separator: wand b

- N elements of $\mathbf{w}, 1$ value for $b: N+1$ parameters OR
- t support vectors $->t$ non-zero $\alpha^{i}, 1$ value for $b: t+1$ parameters

Quadratic mapping function (math) ${ }^{w^{T} x^{k}}+b=\sum_{i} \alpha^{i} y^{i}\left(x^{i}\right)^{T} x^{k}+b$
$x_{1}, x_{2}, x_{3}, x_{4}->x_{1}, x_{2}, x_{3}, x_{4}, x_{1}^{2}, x_{2}^{2}, \ldots, x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{2} x_{4}, x_{3} x_{4}$
N features -> $N+N+\frac{N \times(N-1)}{2} \approx N^{2}$ features
N^{2} values to learn for w in higher-dimensional space
Or, observe: $\left(v^{T} \boldsymbol{x}+1\right)^{2}=v_{1}^{2} x_{1}^{2}+\cdots+v_{N}^{2} x_{N}^{2}$
 $+v_{1} v_{2} x_{1} x_{2}+\cdots+v_{N-1} v_{N} x_{N-1} x_{N}$
$+v_{1} x_{1}+\cdots+v_{N} x_{N}$ $+v_{1} x_{1}+\cdots+v_{N} x_{N}$

Quadratic mapping function Simplified
$x=\left[x_{1}, x_{2}\right]->\left[\sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}{ }^{2}, x_{2}{ }^{2}, \sqrt{2} x_{1} x_{2}, 1\right]$
$x^{i}=[5,-2]$-> $\quad x^{k}=[3,-1]$->
$\varphi\left(\boldsymbol{x}^{i}\right)^{T} \varphi\left(\boldsymbol{x}^{k}\right)=$
Or, observe: $\left(x^{i^{T}} x^{k}+1\right)^{2}=$

Mapping function(s)

- Map from low-dimensional space $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ to higher dimensional space $\varphi(\boldsymbol{x})=\left(\sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}, 1\right)$
- N data points guaranteed to be separable in space of $\mathrm{N}-1$ dimensions or more

$$
\boldsymbol{w}=\sum_{i} \alpha_{i} \varphi\left(x^{i}\right) y^{i}
$$

Classifying x^{k} :

$$
\sum_{i} \alpha_{i} y^{i} \varphi\left(x^{i}\right)^{T} \varphi\left(x^{\boldsymbol{k}}\right)+b
$$

Radial Basis Kernel

Try projection to infinite dimensions

$$
\varphi(\boldsymbol{x})=\left[x_{1}, \cdots, x_{n}, x_{1}^{2}, \cdots, x_{n}^{2}, \cdots, x_{1}^{\infty} \cdots, x_{n}^{\infty}\right]
$$

Taylor expansion: $e^{x}=\frac{x^{0}}{0!}+\frac{x^{1}}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{\infty}}{\infty!}$

$$
\begin{aligned}
K\left(x^{i}, x^{k}\right)= & \exp \left(-\frac{\left(x^{i}-x^{k}\right)^{2}}{2 \sigma^{2}}\right) \\
& \text { Note: }\left(x^{i}-x^{k}\right)^{2}=\left(x^{i}-x^{k}\right)^{T}\left(x^{i}-x^{k}\right)
\end{aligned}
$$

Draw separating plane to curve around all support vectors

Kernels

Classifying x^{k} :

$$
\sum_{i} \alpha_{i} y^{i} \varphi\left(x^{i}\right)^{T} \varphi\left(x^{k}\right)+b
$$

Kernel trick:

- Estimate high-dimensional dot product with function
- $K\left(\boldsymbol{x}^{i}, \boldsymbol{x}^{\boldsymbol{k}}\right)=\varphi\left(\boldsymbol{x}^{\boldsymbol{i}}\right)^{T} \varphi\left(\boldsymbol{x}^{\boldsymbol{k}}\right)$

Now classifying x^{k}

$$
\sum_{i} \alpha_{i} y^{i} K\left(\boldsymbol{x}^{i}, \boldsymbol{x}^{k}\right)+b
$$

Example RBF-kernel separator

Large margin
Non-linear separation

Potential dangers of RBF-kernel separator

The power of SVM (+kernels)

Boundary defined by a few support vectors

- Caused by: maximizing margin
- Causes: less overfitting
- Similar to: regularization

Kernels keep number of learned parameters in check

Binary -> M-class classification

- Learn boundary for class m vs all other classes
- Only need $\mathrm{M}-1$ separators for M classes $-\mathrm{M}^{\text {th }}$ class is for data outside of classes 1, 2, 3, ..., M-1
- Find boundary that gives highest margin for data points $\mathbf{x}^{\mathbf{i}}$

Benefits of generative methods

- $P(\boldsymbol{D} \mid \boldsymbol{\theta})$ and $P(\boldsymbol{\theta} \mid \boldsymbol{D})$ can generate non-linear boundary
- E.g.: Gaussians with multiple variances

