
10/23/2017

1

Dimensionality reduction

CISC 5800

Professor Daniel Leeds

Opening note on dimensional differences
Each dimension corresponds to a feature/measurement

Magnitude differences for each measurement (e.g., animals):

• x1 – speed (mph) 0-100

• x2 – weight (pounds) 10-1000

• x3 – size (feet) 2-20

Problem for learning:

𝑤𝑗 ← 𝑤𝑗 + 𝜀𝑥𝑗
𝑖 𝑦𝑖 − 𝑔(𝑤𝑇𝑥𝑖) −

𝑤𝑗
𝜆

Normalize: 𝑟1 =
𝑥1−𝜇1

𝜎1
or 𝑟1 =

𝑥1−𝜇1

𝑚𝑎𝑥1−𝑚𝑖𝑛1
2

The benefits of extra dimensions

• Finds existing complex
separations between
classes

3

The risks of too-many dimensions

4

• High dimensions with
kernels over-fit the
outlier data

• Two dimensions
ignore the outlier data

10/23/2017

2

Training vs. testing

• Training: learn parameters from set of data in each class

• Testing: measure how often classifier correctly identifies new data

• More training reduces classifier error 𝜀
• More gradient ascent steps

• More learned feature

• Too much training causes
worse testing error – overfitting

5training epochs
er

ro
r

test

train

Goal: High Performance, Few Parameters

• “Information criterion”: performance/parameter trade-off

• Variables to consider:
• L likelihood of train data after learning

• k number of parameters (e.g., number of features)
• m number of points of training data

• Popular information criteria:
• Akaike information criterion AIC: log(L) - k

• Bayesian information criterion BIC: log(L) - 0.5 k log(m)

6

Decreasing parameters

• Force parameter values to 0
• L1 regularization
• Support Vector selection
• Feature selection/removal

•Consolidate feature space
• Component analysis

8

Feature removal

• Start with feature set: F={x1, …, xk}

• Find classifier performance with set F: perform(F)

• Loop
• Find classifier performance for removing feature x1, x2, …, xk:

argmaxi perform(F-xi)
• Remove feature that causes least decrease in performance:

F=F-xi

Repeat, using AIC or BIC as termination criterion
9

AIC: log(L) - k

BIC: log(L) - 0.5 k log(m)

10/23/2017

3

AIC testing: log(L)-k

10

Features k (num features) L (likelihood) AIC

F 40 0.1 -42.3

F-{x3} 39 0.03 -41.5

F-{x3,x24} 38 0.005 -41.3

F-{x3,x24,x32} 37 0.001 -40.9

F-{x3,x24,x32,x15} 36 0.0001 -41.2

Feature selection

• Find classifier performance for just set of 1 feature:
argmaxi perform({xi})

• Add feature with highest performance: F={xi}

• Loop
• Find classifier performance for adding one new feature:

argmaxi perform(F+{xi})
• Add to F feature with highest performance increase: F=F+{xi}

Repeat, using AIC or BIC as termination criterion
11

AIC: log(L) - k

BIC: log(L) - 0.5 k log(m)

Capturing links between features
With large number of features,
some features xj and xk act similarly

xwolf & xlion -> upredator

xsky & xcloud -> uatmosphere

Approximate 𝒙1 =
𝑥1
1

⋮
𝑥𝑁
1

with 𝒖1 =
𝑢1
1

⋮
𝑢𝑁′
1

12

Wolf 12

Lion 16

Monkey 5

Sky 7

Tree 2

Cloud 6

⁞ d ⁞

Document1

4

3

11

3

8

2

⁞

Document2

1

2

4

14

5

12

⁞

Document3

Automatically learn summary features

Defining new feature axes

• Identify a common trend

𝒖𝟏 =
0.91
0.45

• Map data onto new dimension u1

13

dim1

dim2

10/23/2017

4

Defining new feature axes

Project x1 onto u1

𝒖𝟏 =
0.91
0.45

𝒙𝟏 =
−1.19
0.01

For x1: dim1: -1.2

dim2: 0

dimU1: u1Tx1 =
-1.19x.9+.01x.45 =
-1.06

14

dim1

dim2

𝒙𝟏

Terminology:
zq – coordinate on

axis uq

Defining data points with new axes

𝒛1 𝒛2
𝒙𝟏 = −1 × 𝒖𝟏 + (−0.5) × 𝒖𝟐

𝒙𝟐 = 𝟎. 𝟓 × 𝒖𝟏 + (−0.1) × 𝒖𝟐

15

𝒙𝟏
𝒙𝟐

dim1

dim2

Component analysis

Each data point xi in D can be reconstructed as sum
of components u:

•𝒙𝒊 = 𝑞=1
𝑇 𝑧𝑞

𝑖𝒖𝑞

•𝑧𝑞
𝑖 is weight on qth component to reconstruct data

point xi

16

Image features

Image as grid of n x m pixels

Find representative component
features as pixel patterns

17

10/23/2017

5

Cartoon face example:

Add relevant face components
1000-pixel image becomes
6 co-efficients

Estimate is fairly close to
actual image 18

x1

u1 u2 u3

u4 u5

≈ 1 × 𝑢1 + 0 × 𝑢2 + 1 × 𝑢3 + 1 × 𝑢4 + 0 × 𝑢5
Component analysis: examples

“Eigenfaces” – learned from set of face images

u: nine
components

x4: data
reconstructed

19

u1 u2 u3

u7 u8 u9

u4 u6

z1u1+…
+ z9u9 ≈

𝒙𝒊 =

𝑞=1

𝑇

𝑧𝑞
𝑖𝒖𝑞

Types of component analysis

Capture links between features as “components”

•Principal component analysis (PCA)

• Independent component analysis (ICA)

•Non-negative matrix factorization (NMF)

21

Principal component analysis (PCA)

Describe every xi with small set of components u1:Q

Use same u1, … uT for all xi

All components orthogonal:

𝒖𝑖 𝑇𝒖𝑗 = 0 ∀𝑖 ≠ 𝑗

22

𝒙𝒊 =

𝑞=1

𝑇

𝑧𝑞
𝑖𝒖𝑞

10/23/2017

6

Idea of learning in PCA

23

1. D = {x1,…,xn} , data 0-center

2. Component index: q=1

3. Loop

• Find direction of highest variance: uq

• Ensure |𝒖𝑞| = 1

• Remove uq from data:
𝐷 = 𝒙𝟏 − 𝑧𝑞

1𝒖𝑞 , ⋯ , 𝒙𝒏 − 𝑧𝑞
𝑛𝒖𝑞

𝒖𝒊
𝑇𝒖𝒋 = 0 ∀𝑖 ≠ 𝑗

Thus, we guarantee 𝑧𝑗
𝑖 = 𝒖𝑗

𝑇𝒙𝑖

Independent component analysis (ICA)

Describe every xi with small set of
components u1:T

Can use different u1, … uQ for each xi

No orthogonality constraint:

𝒖𝑖 𝑇𝒖𝑗 ≠ 0 ∀𝑖 ≠ 𝑗

24

𝒙𝒊 =

𝑞=1

𝑇

𝑧𝑞
𝑖𝒖𝑞

Idea of learning ICA

25

1. D = {x1,…,xn} , data 0-center

2. Component index: q=1

3. Loop

• Find next most common group
across data points

• Find component direct for group uq

• Ensure |𝒖𝑞| = 1

We cannot guarantee 𝒛𝒋
𝒊 = 𝒖𝒋

𝑻𝒙𝒊

Non-negative matrix factorization (NMF)

Describe every xi with small set of
components u1:T

All components and weights
non-negative
𝒖𝑖 ≥ 0, 𝑧𝑞

𝑖 ≥ 0 ∀𝑖, 𝑞

26

𝒙𝒊 =

𝑞=1

𝑇

𝑧𝑞
𝑖𝒖𝑞

10/23/2017

7

Evaluating components

Components learned in order of descriptive power

Compute reconstruction error for all data by using first r
components:

𝑒𝑟𝑟𝑜𝑟 = 𝑖 𝑗 𝒙𝑗
𝑖 − 𝑞=1

𝑟 𝑧𝑞
𝑖𝒖𝑗
𝑞
2

28

