Consider a classifier hypothesis set of squares. A single hypothesis h is a square with a fixed size and location. Four example hypotheses are shown.

And here is examples of h that will help shatter a set of three data points.

For each data set:

- What is a set of 4 shatterable points ("none" is a possible answer)
- What is the VC dimension?

Example 1:

Four points: None (could shatter with rectangle, not with square!)
VC dimension: 3

Example 2:

Example 3:

Consider the following HMM. It uses a thermometer to attempt to predict the weather.

We begin with the following estimate for our HMM parameters:
$\Pi_{\text {snow }}=0.2 \quad \Pi_{\text {rain }}=0.3 \quad \Pi_{\text {sunny }}=0.3 \quad \Pi_{\text {cloudy }}=0.2$
$\phi_{o, i}$:

	Cold	Mild	Hot
Snow	0.8	0.2	0
Rain	0.5	0.3	0.2
Sunny	0	0.3	0.7
Cloudy	0.2	0.7	0.1

(We COULD actually learn a Gaussian function for the temperature for each state. Here, we'll just do a discrete probability table.)

We receive a new sequence of temperatures and wish to update our HMM parameters.

Sequence:
Cold Cold Hot Mild Hot

Correct alpha values are in black. Made-up alpha values are in color parentheses. You will have to find the real values below. You can use the made-up value in calculating S_{t} values further below.
$\alpha_{t}(i)$

	$\mathrm{t}:$	1	2	3	4
5					
Snow	$? ?(.11)$.08	0	.00011	0
Rain	0.15	$? ?(.04)$.0082	.0017	.00049
Sunny	$? ?(.08)$	0	.0056	$? ?(.0033)$.0020
Cloudy	0.04	.027	$? ?(.0044)$.0053	.00030

Correct beta values are in black. Made-up beta values are in color parentheses. You will have to find the real values below. You can use the made-up value in calculating S_{t} values further below.
$\beta_{t}(i)$

	$\mathrm{t}:$	1	2	3
4				
Snow	.0067	.0062	.13	.05
Rain	.0097	$? ?(.011)$.13	$? ?(.08)$
Sunny	.0028	.087	$? ?(.11)$.52
Cloudy	.0062	.047	.121	$? ?(.11)$

Find the missing values in the tables above.
$\alpha_{1}($ Sunny $)=0$
$\boldsymbol{\beta}_{\mathbf{2}}($ Sunny $)=0.5 \times 0.2 \times 0.13+0.5 \times 0.1 \times .121=\mathbf{0 . 0 1 9}$

What are the values:
S_{2} (cloudy)
$S_{3}($ snow, sunny $)=0$
S_{1} (rain)

Now let us presume the following S values (these are made-up values):
$S_{t}(i)$

t	1	2	3	4	5
Snow	0.3	0.3	0.1	0.2	0.1
Rain	0.5	0.4	0.3	0.3	0.2
Sunny	0.1	0.1	0.3	0.1	0.4
Cloudy	0.1	0.2	0.3	0.4	0.3

$S_{t}(i, j)$

t	1	2	3	4

Rain, Cloudy	.1	.4	.3	.2
Sunny, Rain	0	0	0	0

$\Pi_{\text {rain }}=0.5$
$\Pi_{\text {cloudy }}$

Arain,cloudy
$A_{\text {sunny, rain }}$
$\phi_{\text {hot }, \text { rain }}=\frac{0.3+0.2}{0.5+0.4+0.3+0.3+0.2}=\frac{0.5}{1.7}=\mathbf{0 . 2 9}$
$\phi_{\text {mild,sunny }}$

