Dimensionality reduction

CISC 5800 Professor Daniel Leeds Opening note on dimensional differences

Each dimension corresponds to a feature/measurement

Magnitude differences for each measurement (e.g., animals):

- x₁ speed (mph) 0-100
- x₂ weight (pounds) 10-1000
- x₃ size (feet) 2-20

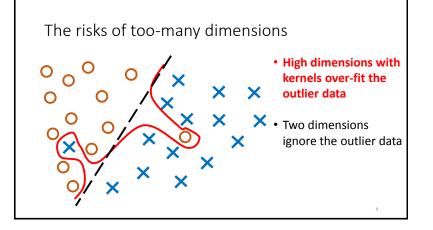
Problem for learning:

$$w_j \leftarrow w_j + \varepsilon x_j^i (y^i - g(w^T x^i)) - \frac{w_j}{\lambda}$$

Normalize: $r_1 = \frac{x_1 - \mu_1}{\sigma_1}$ or $r_1 = \frac{x_1 - min_1}{max_1 - min_1}$

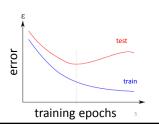
The benefits of extra dimensions

• Finds existing complex separations between classes



Training vs. testing

- Training: learn parameters from set of data in each class
- Testing: measure how often classifier correctly identifies new data
- More training reduces classifier error arepsilon
 - More gradient ascent steps
 - · More learned feature
- Too much training causes worse testing error – overfitting



Goal: High Performance, Few Parameters

- "Information criterion": performance/parameter trade-off
- Variables to consider:
 - L likelihood of train data after learning
 - k number of parameters (e.g., number of features)
 - m number of points of training data
- Popular information criteria:
 - Akaike information criterion AIC: In(L) k
 - Bayesian information criterion BIC: ln(L) 0.5 k ln(m)

Decreasing parameters

- Force parameter values to 0
 - L1 regularization
 - Support Vector selection
 - Feature selection/removal
- Consolidate feature space
 - Component analysis

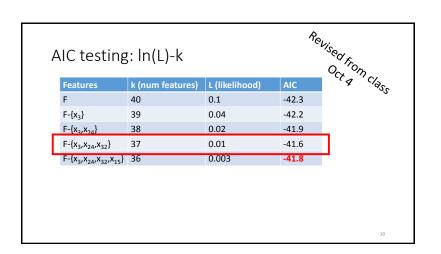
Feature removal

- Start with feature set: F={x₁, ..., x_k}
- Find classifier performance with set F: perform(F)
- Loop
 - Find classifier performance for removing feature $x_1, x_2, ..., x_k$: $argmax_i$ $perform(F-x_i)$
 - Remove feature that causes least decrease in performance:

AIC: ln(L) - k

BIC: ln(L) - 0.5 k ln(m)

Repeat, using AIC or BIC as termination criterion



Feature selection

AIC: ln(L) - k

BIC: ln(L) - 0.5 k ln(m)

- Find classifier performance for just set of 1 feature: argmax_i perform({x_i})
- Add feature with highest performance: F={x_i}
- Loop
 - Find classifier performance for adding one new feature: $\label{eq:adding} \mathsf{argmax}_i \ \mathsf{perform}(F + \{x_i\})$
 - Add to F feature with highest performance increase: $F=F+\{x_i\}$

Repeat, using AIC or BIC as termination criterion

1

Capturing links between features				
	Document1	Document2	2 Documen	With large number of features, at some features x_j and x_k act similarly
Wolf	12	4	1	
Lion	16	3	2	x _{wolf} & x _{lion} -> u _{predator}
Monkey	5	11	4	$x_{sky} \& x_{cloud} \rightarrow u_{atmosphere}$
Sky	7	3	14	Approximate $x^1 = \begin{bmatrix} x_1^1 \\ \vdots \\ x_N^1 \end{bmatrix}$
Tree	2	8	5	
Cloud	6	2	12	
1	1	1		[^N]
$egin{array}{cccccccccccccccccccccccccccccccccccc$				

Image features

Image as grid of n x m pixels

Find representative component features as pixel patterns

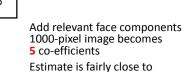
Cartoon face example:

 $\approx 1\times u^1 + 0\times u^2 + 1\times u^3 + 1\times u^4 + 0\times u^5$

u¹

 u^4

 \approx



actual image

Component analysis

Each data point \mathbf{x}^i in D can be reconstructed as sum of components \mathbf{u} :

$$\bullet \boldsymbol{x^i} = \sum_{q=1}^T z_q^i \boldsymbol{u}^q$$

 ${}^ullet z_q^i$ is weight on ${\bf q}^{
m th}$ component to reconstruct data point ${f x}^{
m i}$

.5

Evaluating components

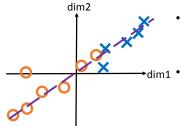
Components learned in order of descriptive power

Compute reconstruction error for all data by using first r components:

$$error = \sum_{i} \left(\sum_{j} \left(\boldsymbol{x}_{j}^{i} - \sum_{q=1}^{r} z_{q}^{i} \boldsymbol{u}_{j}^{q} \right)^{2} \right)$$

.

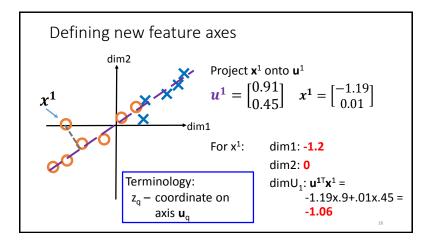
Defining new feature axes

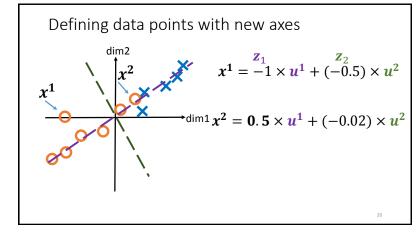


• Identify a common trend

$$\mathbf{u}^1 = \begin{bmatrix} 0.91 \\ 0.45 \end{bmatrix}$$

 $\cdot_{\mathsf{dim}1}$ \bullet Map data onto new dimension $extit{ extit{u}}^{ extit{1}}$





Component analysis

Each data point \mathbf{x}^i in D can be reconstructed as sum of components \mathbf{u} :

$$\bullet x^i = \sum_{q=1}^T z_q^i u^q$$

 ${}^ullet z_q^i$ is weight on ${f q}^{ ext{th}}$ component to reconstruct data point ${f x}^{ ext{i}}$

Component analysis: examples $x^i = \sum_{q=1}^T z_q^i u^q$ "Eigenfaces" – learned from set of face images $u: \text{ nine } \quad u^1 \quad u^2 \quad u^3 \quad x^4: \text{ data reconstructed}$ $u^4 \quad u^4 \quad u^6 \quad z_1 u^1 + \dots \\ u^7 \quad u^8 \quad u^9 \quad + z_9 u^9 \approx z_1 u^4 + \dots$

Types of component analysis

Capture links between features as "components"

- Principal component analysis (PCA)
- Independent component analysis (ICA)
- Non-negative matrix factorization (NMF)

Principal component analysis (PCA)

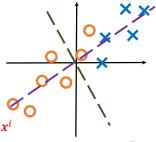
Describe every \mathbf{x}^i with small set of components $\mathbf{u}^{1:Q}$

Use same \mathbf{u}^1 , ... \mathbf{u}^T for all \mathbf{x}^i

All components orthogonal:

$$(\mathbf{u}^i)^T \mathbf{u}^j = 0 \quad \forall i \neq j$$

$$\boldsymbol{x}^i = \sum_{q=1}^T z_q^i \boldsymbol{u}^q$$



Independent component analysis (ICA)

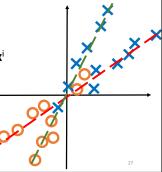
Describe every **x**ⁱ with small set of components **u**^{1:T}

Can use different u¹, ... u^Q for each xⁱ

No orthogonality constraint:

$$(\mathbf{u}^i)^T \mathbf{u}^j \neq 0 \quad \forall i \neq j$$

$$x^i = \sum_{q=1}^T z_q^i u^q$$



END OF MATERIAL FOR MIDTERM

Idea of learning in PCA

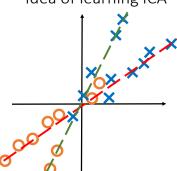
- 1. $D = \{x^1, ..., x^n\}$, data 0-center
- 2. Component index: q=1
- 3. Loop
- Find direction of highest variance: uq
 - Ensure $|\boldsymbol{u}^q| = 1$

• Remove
$$\mathbf{u_q}$$
 from data:
$$D = \left\{ \mathbf{x^1} - z_q^1 \mathbf{u}^q, \cdots, \mathbf{x^n} - z_q^n \mathbf{u}^q \right\}$$

 $(\mathbf{u}_i)^T \mathbf{u}_i = 0 \quad \forall i \neq j$

Thus, we guarantee $z_j^i = \boldsymbol{u}_j^T \boldsymbol{x}^i$

Idea of learning ICA



- 1. $D = \{x^1, ..., x^n\}$, data 0-center
- 2. Component index: q=1
- 3. Loop
- Find next most common group across data points
- Find component direct for group uq
 - Ensure $|\boldsymbol{u}^q| = 1$

We cannot guarantee $z_i^i = u_i^T x^i$

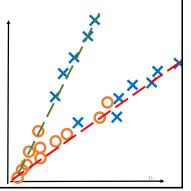
Non-negative matrix factorization (NMF)

Describe every xi with small set of components u^{1:T}

All components and weights non-negative

$$u^i \ge 0, \ z_q^i \ge 0 \ \forall i, q$$

$$\mathbf{x}^i = \sum_{q=1}^T z_q^i \mathbf{u}^q$$



Types of component analysis

Principal component analysis (PCA):

- Minimal components to describe all data
- All components orthogonal: $(u_i)^T u_i = 0 \quad \forall i \neq j$

Independent component analysis (ICA):

- Minimize components to describe each data point x^i
- Can focus on different components for different x^i

Non-negative matrix factorization (NMF):

- All data xi non-negative
- All components and weights non-negative $u_i \ge 0$, $z_a^i \ge 0 \ \forall i, q$

Comparing component analysis

PCA

- Represent each data point **x** with low number of components
- All components used to reconstruct each data point x

ICA / NMF

- Represent each data point **x** with low number of components
- ullet Subset of components used to reconstruct each data point ${f x}$