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Learning Theory

CISC 5800
Professor Daniel Leeds

The classifier

Function C that provides
correct label (Y) based on features (X)

Clx)=y
lion: 16 lion: 0
wolf: 12 v:,ZTf )
monkey: 14 . o C
S —> jungle WHSEE — wallStreet

analyst: 1

dividend: 1 analyst: 10

dividend: 12

Goal: identifier classifier that maximizes
correct labels for most inputs

Sample complexity

How many training examples needed to learn concept?

* X — set of data points

* P(X) — Probability of drawing data point x

* H - space of hypotheses H = {h : X -> classes }
* C—correct assignment C = {c: c(x) =y VxeX }

X — data points
Probability of error h

H=1{h:X->1{0,1}}

True error of h: probability randomly selected
data point from P(X) misclassified

errorye(h) = Prpy [h(x) # c(x)]

* Hard to compute, but can prove properties of error,,,.
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Example: Learner picks one of fixed number
of classifiers heH

Correct classifier ¢ is some assignment of each x to a label

How many training points m needed for error,(h)<e ?
Problerror,(h)< €] > 1-6

“Probability learned classifier h has worse than € error is < §”

“Probably Approximately Correct
Learning” — PAC Learning

Binary example: sample complexity
Notefore =[0,1], (1—¢) <e~¢

What is the chance learned h is bad but classifies training data
correctly?

If errory.(h)>e:
*Prob [ h correctly labels x! | < (1 —¢) < e~ ¢
* Prob [ h correctly labels x! and x2...and x™ ] < (1 — &)™ < e ™¢

If classifier picks one h* randomly from H

* Prob[h™ is bad] = Prob[h, bad] + ... Prob[h, bad]
= Prob[ error,(h*)>¢ | < |H| e ™ Valiant, 1984

Binary example: sample complexity

Number of data points to reduce chance
of false classification, enforce

Problerror,(h)< €] > 1-6
1- Prob[error,,.(h)< €]= Problerror,(h)> €]< §

Prob[ error,.(h")>¢ ] < |[H| e "™¢; stricter bound |H| e™™¢ < §

Valiant, 1984

Binary example: sample complexity

Number of data points to reduce chance
of false classification, enforce

Prob[error,.(h)< €] > 1-6

Prob[ error,,.(h")>e ] < |[H| e ™™ < §

Valiant, 1984
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VC Dimensions

If H not finite, PAC result seems to require co data points
* Overly conservative

“Dichotomy” — division of set of points S into two subsets

* “Shattering” — set of points is shattered by H iff there exists
heH associated with every possible dichotomy

Vapnik-Chervonenkis dimension VC(H) is size of largest finite
subset of X that can be shattered by H

Shattering example

* H={rectangles}
* S={3 specified dots}

VC(3)

Shattering example

* H={rectangles} VC(3)
* S={4 specified dots}

Shattering example

* H={rectangles}
* S={4 specified dots}

VC(4)
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Shattering example

* H={ovals} VC(5) — convex hull

* S={8 specified dots}

PAC result with infinite H

VC(H) is size of largest finite subset of X that can be shattered

by H

. d=VC(H)

*m =0 (% [d logi + log%]) ~§ [d logi + log%]

1, |H .
Recall: m > gln% for finite size H




