Fake Homework

Presume the following Markov Model

- 1. What is the probability of each of the following state sequences?
 - (a) Farm, House, Farm, Lake
 - (b) Woods, Woods, Farm, House, Farm
 - (c) Farm, Farm, House

Let us expand the above model to be a full HMM using the emission probabilities below: $\phi_{i,j} = P(o_t = x_i | q_t = s_j)$:

d/o	quack	woof	television	roar	bah	speech
House (locat 1)	0.1	0.2	0.3	0	0.1	0.3
Farm (locat 2)	0.3	0.2	0	0	0.4	0.1
Woods (locat 3)	0.1	0.3	0	0.6	0	0
Lake (locat 4)	0.7	0.1	0	0	0	0.2

(For reference, you can presume a duck quacks, a dog woofs, a bear roars, a sheep bahs, and a human speaks.)

2. What is the probability of each of the following sequences of states and observations:
(a) P(q₁=Woods, o₁=woof, q₂=House, o₂=bah)

(b) P(q₁=House, o₁=woof, q₂=Farm, o₂=speech)

3. Suppose we observe the following sounds in order:

Given the observations above:

(a) Use the Viterbi algorithm to assess the most likely set of states.

As you work on this problem, provide the values for

- (b) $\delta_1(Farm)$
- (c) $\delta_2(Woods)$