Final practice part 2

1. Consider the neural network below.

Layer 3

Layer 2

Layer 1

The initial weights are:
Layer 1: $w_{1,1}^{1}=-10 \quad w_{1,2}^{1}=0$
$w_{13}^{1}=-5$
$w_{1,4}^{1}=10$
$b_{1}^{3}=4$
Unit 1
$w_{2,1}^{1}=20 \quad w_{2,2}^{1}=0$
$w_{2,3}^{1}=10$
$w_{2,4}^{1}=-5$
$b_{1}^{3}=4$
Unit 2
$w_{3,1}^{1}=0 \quad w_{3,2}^{1}=-10$
$w_{3,3}^{1}=0$
$w_{3,4}^{1}=20 \quad b_{1}^{3}=4$
Unit 3
Layer 2: $w_{1,1}^{2}=5 \quad w_{1,2}^{2}=10 \quad w_{1,3}^{2}=0 \quad b_{1}^{3}=-2 \quad$ Unit 1

$$
w_{2,1}^{2}=0 \quad w_{2,2}^{2}=-10 \quad w_{2,3}^{2}=15 \quad b_{1}^{3}=-2 \quad \text { Unit } 2
$$

Layer 3: $w_{1,1}^{3}=10 \quad w_{1,2}^{3}=-20 \quad b_{1}^{3}=5$
Compute the output given the following inputs:
(a) Compute $r_{1}^{1}, r_{2}^{1}, r_{3}^{1}$. Given the inputs: $\mathrm{x}_{1}=5 \quad \mathrm{x}_{2}=-10 \quad \mathrm{x}_{3}=10 \quad \mathrm{x}_{4}=0$
(b) Compute r_{1}^{3}. Given the lower-layer outputs: $r_{1}^{2}=0.1, r_{2}^{2}=0.6$
(c) Compute r_{2}^{2}. Given the lower-layer outputs: $r_{1}^{1}=0.1, \quad r_{2}^{1}=0.3, \quad r_{3}^{1}=0.6$

Sum inputs: $0.1 \times 0+0.3 \times-10+0.6 \times 15-2=0-3+9-2=4$
Use sigmoid $\mathrm{g}(4): r_{2}^{2}=\mathbf{0 . 9 9}$
Compute the change in the specified weight based on the following input/outputs. In each case, presume the starting weight is as specified in the original list above. Assume $\varepsilon=1$
(d) Compute $\Delta w_{1,2}^{3}$. Given the layer 2 rates: $r_{1}^{2}=0.2$ and $r_{2}^{2}=0.8$; layer 3 rates: $r_{1}^{3}=0.1$; the desired output from r_{1}^{3} is 1.0
$\Delta w_{1,2}^{3}=\varepsilon\left(1-r_{1}^{3}\right)\left(1-r_{1}^{3}\right) r_{1}^{3} r_{2}^{2}=1 \mathrm{x}(1-.1) \mathrm{x}(1-.1) \mathrm{x} .1 \mathrm{x} .8=1 \mathrm{x} .9 \mathrm{x} .9 \mathrm{x} .1 \mathrm{x} .8=\mathbf{0 . 0 6}$
(e) Compute $\Delta w_{1,2}^{1}$. Given the features: $\mathrm{x}_{1}=10, \mathrm{x}_{2}=-5, \mathrm{x}_{3}=0, \mathrm{x}_{4}=15 ; r_{1}^{1}=0.5, r_{2}^{1}=0.2, r_{3}^{1}=0.8$; delta values: $\delta_{1}^{2}=-0.005, \delta_{2}^{2}=0.01$
2. For each of the following functions $f(x ; h)$, compute the value of h that will maximize $f(x ; h)$, assuming each function has a single maximum and no minimum.
(a) $\mathrm{f}_{1}(\mathbf{x} ; \mathrm{h})=\sum_{i}\left(-h^{2}-10 h x_{i}+12 x_{i}^{2}\right)$
(b) $\mathrm{f}_{2}\left(\mathrm{x}\right.$; h) $=e^{-\left(h^{3}+x^{2}\right)}=\exp \left(-\left(h^{2}+x^{2}\right)\right)$
(c) $\mathrm{f}_{3}(\mathbf{x} ; \mathrm{h})=\prod_{i} 3 h^{\left(x^{i}\right)}$

Set derivative equal to $0 \ldots$ or set derivative of log equal to 0
$\log f_{3}: \sum_{i}\left(\log 3+x^{i} \log h\right)$
Set equalto 0: $\sum_{t} 3 x^{i} \log h=\log h \sum_{t} 3 x^{i}=0$
$\longrightarrow \log h=0$
—h-1

CORRECTION:

Set equal to 0: $\sum_{i}\left(\log 3+x^{i} \log h\right)=\sum_{i} \log 3+\log h \sum_{i} x^{i}=0$

$$
\begin{aligned}
& \log h=\frac{-\sum_{i} \log 3}{\sum_{i} x^{i}} \\
& \mathbf{h}=\exp \left(\frac{-\sum_{i} \log 3}{\sum_{i} x^{i}}\right)=\exp \left(\frac{-\# \text { Data } \times \log 3}{\sum_{i} x^{i}}\right)
\end{aligned}
$$

3. Consider the following Gaussian likelihoods for features x_{1}, x_{2}, and x_{3} given class $=1$ (blue curves) or class $=0$ (red curves).

i. We wish to multiply these likelihoods together to compute $\mathrm{P}(\mathbf{x} \mid \mathrm{y})$. Which type of classification is this:
(a) Naïve Bayes Max-Posterior classification
(b) Non-Naïve Bayes Max-Likelihood classification
(c) Naïve Bayes Max-Posterior classification
(d) Naïve Bayes Max-Likelihood classification
(e) Support Vector Machine classification
ii. For the feature values below, which class is more probable (based on $P(\mathbf{x} \mid \mathrm{y})$ calculated from the plots above)?
(a) $x_{1}=5 \quad x_{2}=7 \quad x_{3}=6$

Class $y=1: ~ P\left(x_{1} \mid y=1\right)=0.32 \quad P\left(x_{2} \mid y=1\right)=0.1 \quad P\left(x_{3} \mid y=1\right)=0.2 \quad$-> total: 0.006
Class $y=0: P\left(x_{1} \mid y=0\right)=0.05 \quad P\left(x_{2} \mid y=0\right)=0.2 \quad P\left(x_{3} \mid y=1\right)=0.1 \quad$-> total: 0.001

Class $y=1$ most probable
(b) $x_{1}=8 \quad x_{2}=8 \quad x_{3}=6$
iii. Which class is more probable if we also incorporate the following prior:
$P(y=0)=0.1 \quad P(y=1)=0.9$
to compute $\mathrm{P}(\mathrm{y} \mid \mathbf{x})$?
(a) $x_{1}=4 \quad x_{2}=5 \quad x_{3}=9$
(b) $x_{1}=6 \quad x_{2}=7 \quad x_{3}=7$
iv. Provide a prior that would make class 1 more probable if the \mathbf{x} values are:
$x_{1}=6 \quad x_{2}=8 \quad x_{3}=6$
Class $y=1: P\left(x_{1} \mid y=1\right)=0.2 \quad P\left(x_{2} \mid y=1\right)=0.02 \quad P\left(x_{3} \mid y=1\right)=0.05 \quad$-> total: 0.0002
Class $y=0: P\left(x_{1} \mid y=0\right)=0.15 \quad P\left(x_{2} \mid y=0\right)=0.4 \quad P\left(x_{3} \mid y=1\right)=0.1 \quad$-> total: 0.006
Prior for $y=1(P(y=1))$ needs to be at least $30 x$ larger than prior for $y=0$:
e.g.,
$P(y=1)=0.98 \quad P(y=0)=0.02$
4. Using each of the following kernel functions, compute the result of $K\left(\mathbf{x}^{1}, \mathbf{x}^{2}\right)$, for the specified input vectors.
$\mathrm{K}(\mathrm{c}, \mathrm{d})=2^{-\left(c^{T} d+2\right)}$
(a) $\boldsymbol{c}=\left[\begin{array}{c}4 \\ 0 \\ -2\end{array}\right] \quad \boldsymbol{d}=\left[\begin{array}{c}0 \\ 0 \\ 1.5\end{array}\right]$
(b) $\boldsymbol{c}=\left[\begin{array}{c}1 \\ 0.5 \\ -2\end{array}\right] \quad \boldsymbol{d}=\left[\begin{array}{c}3 \\ -2 \\ -1\end{array}\right]$
$\mathrm{K}(\mathbf{c}, \mathbf{d})=\left(\boldsymbol{c}^{T} \boldsymbol{d}-4\right)^{2}+10 \boldsymbol{c}^{T} \boldsymbol{d}$
(c) $\boldsymbol{c}=\left[\begin{array}{c}0 \\ 3 \\ -2\end{array}\right] \quad \boldsymbol{d}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$
$c^{\top} d=0+0-4=-4$
$(-4-4)^{2}+10 x-4=(-8)^{2}-40=64-40=24$
(d) $\boldsymbol{c}=\left[\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right] \quad \boldsymbol{d}=\left[\begin{array}{c}3 \\ 0 \\ -1\end{array}\right]$
5. Consider the following training data. Red circles are class 0 , blue x 's are class 1 , and all other shapes (triangles, stars, diamonds) are data points with known feature values but unknown labels.

Using the EM approach for learning, and assuming that we use a linear logistic classifier, how will the black triangles, diamonds, and star data points be used for learning? In the first round of EM, what y value do you expect each data point to be assigned, or no value at all?

First, could assign random y values to the non-circle and non-x shapes, then learn classifier, then in next round use learned separator/classifier to assign better guesses of classes.
6. Consider the classification problem with the following features and classes.

Class Person-type: Teenager, YoungProfessional, Adult, SeniorCitizen
Features:
Daily-time-online: 1-2 hours, 3-4 hours, 5-8 hours
Number-of-online-friends: 0-10, 10-50, 50-200, 200-1000
Favored content: News, SocialPosts, Education, Entertainment
Money-spent-online: None, $\$ 1-\$ 50, \$ 50-\$ 100, \$ 100-\$ 500, \$ 500+$
(a) How many parameters given Naïve Bayes a posteriori classification?
(b) How many parameters without Naïve Bayes (nor any Bayes net) likelihood classification?
(c) How many with the following Bayes nets likelihood classification?

Probability computed using $P(P), P(M \mid P), P(N \mid P), P(F \mid P)$ and $P(D \mid M, N)$
$P(P)<-4-1=3$ parameters <- ACTUALLY NOT NEEDED FOR LIKELIHOOD COMPUTATION
$P(M \mid P)=4 \times(5-1)=4 \times 4=16 \quad$ (\# of dependents variable values $X \#$ dependent var values)
$P(N \mid P)=4 \times(4-1)=4 \times 3=12$
$P(F \mid P)=4 x(4-1)=4 \times 3=12$
$P(D \mid M, N)=(5 \times 4) \times(3-1)=20 \times 2=40$

In total: $16+12+12+40=80 \quad$ or
Alternatively could be $4+16+12+12+40=84$
(d) What is the minimum number of training examples you would advise to use for the Bayes net from (c)?

Want training data to be at least double the number of parameters to learn (preferably 10x more or even greater). Take your answer from (b) and multiply by 2 (or 10). So 160, or 800.

