2/28/2017

Dimensionality reduction

CISC 5800
Professor Daniel Leeds

Opening note on dimensional differences

Each dimension corresponds to a feature/measurement

Magnitude differences for each measurement (e.g., animals):
* X, — speed (mph) 0-100

* X, — weight (pounds) 10-1000
* x5 — size (feet) 2-20

GRS

Problem for learning: _ -]
wj «w; +exj(y' — gw'xh)

X1—H1 X1—H1
pu or Tl = -
1 max,;—ming

Normalize: r; =

The benefits of extra dimensions

e o
* Finds existing complex
separations between
X classes
X
X
X

The risks of too-many dimensions
* High dimensions with

kernels over-fit the

X X outlier data

X ignore the outlier data

2/28/2017

Goal: High Performance, Few Parameters

Training vs. testing
* “Information criterion”: performance/parameter trade-off

* Training: learn parameters from set of data in each class

* Testing: measure how often classifier correctly identifies new data * Variables to consider:

« L likelihood of train data after learning
c * k number of parameters (e.g., number of features)
* More training reduces classifier error « m number of points of training data
* More gradient ascent steps

* More learned feature 5 * Popular information criteria:
b * Akaike information criterion AIC: log(L) - k
* Too much training causes ian inf . terion BIC: | 05Kl
worse testing error — overfitting Bayesian information criterion BIC: log(L) - 0.5 k log(m)
training epochs
Decreasing parameters Feature removal
* Force parameter values to 0 * Start with feature set: F={x,, ..., x,}
* L1 regularization * Find classifier performance with set F: perform(F)
* Support Vector selection * Loop
* Feature selection/removal * Find classifier performance for removing feature x,, X,, ..., X,:
argmayx; perform(F-x;)
. * Remove feature that causes least decrease in performance:
* Consolidate feature space F=F-x, AIC: log(L) - k
» Component analysis -
P v BIC: log(L) - 0.5 k log(m)
Repeat, using AIC or BIC as termination criterion

2/28/2017

AIC: log(L) - k
AIC testing: log(L)-k Feature selection BIC: log(L) - 0.5 k log(m)

M * Find classifier performance for just set of 1 feature:
F 4 -1 -

423 argmayx; perform({x;})

F-{xs} 39 0.03 -41.5 s e
P - 0,005 413 Add feature with highest performance: F={x;}
I F-{XoXpaXsy} 37 0.001 40.9 I * Loop
T Ko XoaXen el 36 00001 312 * Find classifier performance for adding one new feature:
argmax; perform(F+{x;})
* Add to F feature with highest performance increase: F=F+{x;}
Repeat, using AIC or BIC as termination criterion
Capturing links between features Defining new feature axes
With large number of features, dim2
Document1 Document2 Document3 some features x; and x, act similarly > *ldentify a common trend
Wolf 12 4 1 Ag(ul = [0.9 1]
Lion 16 3 2 Xwolf & Xjion = Upredator 0.45
Monk 5 11 4 Xsky & Xgjouq => U h) .
onsz 7 3 ” e stmosphere —. 60 X dim1 * Map data onto new dimension u;
1
Tree 2 8 5 . LM GO/O’
Approximate x- = |
Cloud 6 2 12 1
H H H H xN
H : : H u%
withu = ! S-E-0-0- 9K INK-
Automatically learn summary features u}vl

2/28/2017

Defining new feature axes Defining data points with new axes
dim2 o dim2 z, z,
¢ Frolectx omou, \ k2 = lixut+(-05) xu?
. . W= 0.91] M [—1.19 L N
x! X 0.45 0.01 Y X
- Z X : —O N> % di 2 1 2
< — dim1 — dml x4 =0.5xu" +(-0.1) X u
) For x%: dim1:-1.2 7 Y \
o dim2: 0 za \
Terminology: dimU;: u"x! = .
z,— coordinate on -1.19x.9+.01x.45 =
axis u -1.06
Component analysis
Image features
Each data point x’' in D can be reconstructed as sum
of components u: Image as grid of n x m pixels =1
@ N

.xi=

T

q=lzguq

-zé is weight on gt component to reconstruct data
point xi

Find representative component
features as pixel patterns

2/28/2017

Component analysis: examples T
xt = Z zbul

“Eigenfaces” — learned from set of face images 7°*

x4: data
reconstructed

u: nine
components

Component analysis: examples

T
xl = Z ziul

Components Data a=1
2
W
> N
-1 N Z,
_— / \/
\/ /X1 X X3 X X5
0
\ R
Com——

Types of component analysis

Capture links between features as “components”

* Principal component analysis (PCA)
* Independent component analysis (ICA)
* Non-negative matrix factorization (NMF)

Principal component analysis (PCA)

Describe every xi with small set of components u:Q
Use same u?, ... u@ for all xi \

All components orthogonal:
W)™/ =0 Vi+j

T
i_ i
x—quuq .

=1

2/28/2017

Idea of learning in PCA

vl *Ensure [ul| =1

1. D ={x%,..,x"}, data O-center

2. Component index: g=1

3. Loop

* Find direction of highest variance: ud

X)('
»7x

%

*Remove u, from data:

D = {x' - zlud, -, x™ — z}ul}

Thus, we guarantee z; = uj x'

Independent component analysis (ICA)

Describe every x' with small set of
components u@

Can use different ul, ... u® for each xi %/ % X
No orthogonality constraint:)(/x
iNT,,j . .
(W)'uw #0 Vi#]j O
xt = Z zgut 7 > &
q=1 7

Idea of learning ICA

X

)(1. D={x,..,x"}, data O-center

/)?)(; L(;c;r;ponent index: g=1
¥ oo X '
%

(* Find next most common group
9.4 across data points

* Find component direct for group u9|
* Ensure [u?] =1

We cannot guarantee z]’- =ulxl

]

Non-negative matrix factorization (NMF)

Describe every x' with small set of P4
components ulQ %

Use same u?, ... u@for all x’

All components and weights &x/
nqn—negati\(e o~
u' 20,220 Vigq 4
7
7

. #
x = qu qu £

Evaluating components

Components learned in order of descriptive power

Compute reconstruction error for all data by using first r
components:

. C\2
error =Y, (Zj(x} - Zzlz}]u](?))

2/28/2017

