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Hidden Markov Models

CISC 5800
Professor Daniel Leeds

Representing sequence data

|
* Spoken language ’ ‘ ' »
* DNA sequences
* Daily stock values

Example: spoken language

F?r plu? fi?e is nine
* Between F and r expect a vowel: “aw”, “ee”, “ah”; NOT “oh”, “uh”
* At end of “plu” expect consonant: “g”, “m”, “s”; NOT “d”, “p”

Markov Models

Start with:

* n states: sy, ..., S,

* Probability of initial start states: I14,..., [T,

* Probability of transition between states: A;; = P(g,=s;| d..1=5;)

M, = 03,1 =0.7
A dice-y example

* Two colored die N TN

* What is the probability we start at s,?

* What is the probability we have the sequence of die choices:

Sar Sa?

* What is the probability we have the sequence of die choices:

Sg» Sas Sgr SA?
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+ What is the probability we have the sequence ot die choices:

Sgs Sas Sgr SA®

My, =03,z =07

* Dynamic programming: find answer for g, , then compute q,,;

Hidden Markov Models

Probability observe value x;
* Actual state q “hidden” when state is s

* State produces visible data o: ¢; ; = P(0, = x;|q; = s;)
* Compute

T T
P(0,Q10) = p(q,|m) p(qtht-l,A)ﬂp(othp@
=) =

A AR

State\Time | t, b & pei) = z p(ac = silqe-1 = 5;)Pe-10)
Sa 03 7
S 0.7 p.(i) = P(q,=s;) -- Probability state i at

timet

Q Probability of Probability of
state sequence  observation

¢ sequence, given
states .

Deducing die based on observed “emissions”

P(o[sa) |P(o]sg) e

Each color is biased

Deducing die based on observed “emissions”
Plolsy) | P(olsy)

Each color is biased
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Intuition — balance transition and emission probabilities
Observed numbers: 554565254556 — the 2 is probably from s
Observed numbers: 554565213321 —the 2 is probably from s,

*Wesee: 5 What is probability of 0=5, q=B (blue)
HB¢5,B =0.7x0.2=0.14

*Wesee:5,3 Whatis probability of 0=5,3 | q=B, B?
HB¢5,BAB,B¢3,B= 0.7x0.2x0.8x0.1=0.0112
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Goal: calculate most likely states given

observable data PO10)P(O)

P(0)

argmax , P(Q | O)|= arg max ,

Define and use 6, (i) are max , P(O |Q)P(Q)|
o,(1)=max p(q,...q,, rq, =5; ~O,..0)

-Gy

6,(i) : max possible value of P(qy,..,q,,04,..,0,) given we
insist q,=s;
Find the most likely path from q; to g, that
° 4c=s;
* Outputs are oy, ..., O,

Viterbi algorithm: 8;(7)
6,(1)) = ;P(o1lqy = s;) =y

8:(i) = m]ax 8e-1() P(ae = silqe-1 = Sj)P(otht =5;) =
max 8¢-1() @A

P(Q*|O)=argmaxq P(Q|O) = argmayx; 6, (i)

Viterbi algorithm: bigger picture

Compute all §;(i)’s

* At time t=1 compute §; (i) for every state i

* At time t=2 compute &, (i) for every state i (based on &; (i) values)

* At time t=T compute 84 (i) for every state i (based on §_1 (i) values)
Find states going from t=T back to t=1 to lead to max &7 (i)

* Now find state j that gives maximum value for §7(j)

* Find state k at time T-1 used to maximize §7(j)

* Find state z at time 1 used to maximize §,(y)

Parameters in HMM

Initial probabilities:  m;

Transition probabilities A How do we learn

1)
these values?
Emission probabilities ¢; ;
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First, assume we know the states

Learning HMM parameters: m;

x::|A|B,A,A,B
x2:|BJB,B,A,A
x3:|A|A,B,A,B

Compute MLE for each parameter

T T
m* = argmax 1_[ m(q1) 1_[ p(q¢lqe-1) l_[ p(oclqe, )
T k t=2 t=1

_ #D(q1 = Sp)
(Y,

First, assume we know the states

Learning HMM parameters: A,

. Compute MLE for each parameter

xi: BATEH r r
A a4 =argmax| [n(an | [p@lac| [peoclae )
A k t=2 t=1
A= #D(q¢=5;,qt-1=5])
WO #D(@e-a=s))

First, assume we know the states

Learning HMM parameters: q,')iJ

ol:[2)5/3

T T
x2: B,B,B x
= ¢* =argmax | [7n(q))| |p(qclqe- )HP(O 19t @)
02:4,5,1§j » 1:[ 1—[ RS T S

x%BﬁB
o31l4l5)2)6

x:|AIBIAIAB  Compute MLE for each parameter
2 3/6

#D(o, =i,q, = sj)
i“ =" .

N

#D(q, = ;)

Challenges in HMM learning

Learning parameters (1, 4, ¢p) with known states is not too hard
BUT usually states are unknown

If we had the parameters and the observations, we could figure
out the states: Viterbi P(Q*|O)=argmaxq P(Q|O)
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Expectation-Maximization, or “EM”

Problem: Uncertain of yi (class), uncertain of 8% (parameters)

Solution: Guess yi, deduce 8°, re-compute yi, re-compute 0’ .. etc.

OR: Guess 6%, deduce y', re-compute 6, re-compute yi
Will converge to a solution

E step: Fill in expected values for missing labels y
M step: Regular MLE for 8 given known and filled-in variables
Also useful when there are holes in your data

Computing states q,

Instead of picking one state: q,=s;, find P(q,=s;| o)

P(qt = Silol’”"OT) _ %
jot t

Forward probability: a;(i) = P(01...0; A q; = S;)

Backward probability: B.(i) = P(0t41 .- 07|q: = S;)

Details of forward probability
Forward probability: a,(i) = P(01...0; A q; = S;)
ay (i) = ¢o,im; = P(011q1 = s)P(q1 = 57)
a, (i) = ¢ot,izAi,j“t—1(j)

j
a.(i) = P(olq, = Si)z P(qe = si|qe-1 = 5j)“t—1(f)
j

Details of backward probability
Backward probability: B.(i) = P(0;41 .- 07|q: = S;)

Be) = ) Ajidhoy,iBen()
J

B () = ZP(QtH = 5j|CIt = Si)P(0t+1|CIt+1 = 5j)ﬁt+1(f)

J

Final B: ﬁT—l(i)
Bros() =) Ajibor_,i

j
= P(QT = 5j|‘7T—1 = Si)P(OquT =5j)
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E-step: State probabilities

Recall: when states known

One state: OB m, = 22@1=54)
ar()pe (i , #D
P(q; = si|01,+,07) = a———= = S:(i
qc l| 1 T Z] at(])ﬁt(]) t( ) 4= #D(qtzgi_qt_lzsj)
YT #D(@e-1=s))
Two states in a row:
PG = 5, qesr = 5il0 or) = ar(NA;jbo,,,,iBrs1(0) bij = #D(or=0)
— i) — . FEITIS f— - - ) #D =
e O O S ¥ (DA jbor iBee1 (D (=<
=S¢ (L, ))
M-step Review of HMMs in action

_ XeSe(@))
Aij = T Se (D)

¢ o Ztlo,_»:obs Se(D)
ObsE T Y S ()

m; = S;(0)

Known states:

_ #D(91=54)
A #D
'Aij _ #D(q¢=5;,qt-1=5])
’ #D(q¢-1=5j)
gy = D)
b #D(qe=s))

For classification, find highest probability class given features

Features for one sound:

* [y, 04, A, 0y, .., Oy, O7]

Conclude word: Q

Generates states: 0 é

soundl sound2 sound3




