Dimensionality reduction

CISC 5800 Professor Daniel Leeds Opening note on dimensional differences

Each dimension corresponds to a feature/measurement

Magnitude differences for each measurement (e.g., animals):

- x₁ speed (mph) 0-100
- x₂ weight (pounds) 10-1000
- x₃ size (feet) 2-20

Problem for learning:

$$w_j \leftarrow w_j + \varepsilon x_j^i (y^i - g(w^T x^i)) - \frac{w_j}{\lambda}$$

Normalize: $r_1 = \frac{x_1 - \mu_1}{\sigma_1}$ or $r_1 = \frac{x_1 - \mu_1}{max_1 - min_1}$

The benefits of extra dimensions

• Finds existing complex separations between classes

Training vs. testing

- Training: learn parameters from set of data in each class
- Testing: measure how often classifier correctly identifies new data
- More training reduces classifier error arepsilon
 - More gradient ascent steps
 - · More learned feature
- Too much training causes worse testing error – overfitting

Goal: High Performance, Few Parameters

- "Information criterion": performance/parameter trade-off
- Variables to consider:
 - · L likelihood of train data after learning
 - k number of parameters (e.g., number of features)
 - m number of points of training data
- Popular information criteria:
 - Akaike information criterion $\underline{\textbf{AIC}}$: log(L) k
 - Bayesian information criterion <u>BIC</u>: log(L) 0.5 k log(m)

Decreasing parameters

- Force parameter values to 0
 - L1 regularization
 - Support Vector selection
 - Feature selection/removal
- Consolidate feature space
 - Component analysis

Feature removal

- Start with feature set: F={x₁, ..., x_k}
- Find classifier performance with set F: perform(F)
- Loop
 - Find classifier performance for removing feature $x_1, x_2, ..., x_k$: $argmax_i$ perform(F- x_i)
 - Remove feature that causes least decrease in performance:

AIC: log(L) - k

BIC: log(L) - 0.5 k log(m)

Repeat, using AIC or BIC as termination criterion

AIC testing: log(L)-k

Features	k (num features)	L (likelihood)	AIC
F	40	0.1	-42.3
F-{x ₃ }	39	0.03	-41.5
F-{x ₃ ,x ₂₄ }	38	0.005	-41.3
$F-\{x_3, x_{24}, x_{32}\}$	37	0.001	-40.9
F-{x ₃ ,x ₂₄ ,x ₃₂ ,x ₁₅ }	36	0.0001	-41.2

)

Feature selection

<u>AIC</u>: log(L) - k

BIC: log(L) - 0.5 k log(m)

- Find classifier performance for just set of 1 feature: argmax_i perform({x_i})
- Add feature with highest performance: F={x_i}
- Loop
 - Find classifier performance for adding one new feature: $\label{eq:adding} \mathsf{argmax}_i \ \mathsf{perform}(F + \{x_i\})$
 - Add to F feature with highest performance increase: F=F+{x_i}

Repeat, using AIC or BIC as termination criterion

1

Capturing links between features

 $\label{eq:with large number of features} With large number of features, \\ \textit{Document1 Document2 Document3 some features } x_j \text{ and } x_k \text{ act similarly}$

Wolf	12	4	1
Lion	16	3	2
Monkey	5	11	4
Sky	7	3	14
Tree	2	8	5
Cloud	6	2	12
1	1	1	:

 $x_{wolf} & x_{lion} \rightarrow u_{predator}$ $x_{sky} & x_{cloud} \rightarrow u_{atmosphere}$

Approximate $x^1 = \begin{bmatrix} x_1^1 \\ \vdots \\ x_N^1 \end{bmatrix}$

Automatically learn summary features

1

Defining new feature axes

Component analysis

Each data point \mathbf{x}^i in D can be reconstructed as sum of components \mathbf{u} :

$$\bullet \boldsymbol{x^i} = \sum_{q=1}^T z_q^i \boldsymbol{u}^q$$

 ${}^ullet z_q^i$ is weight on ${f q}^{ ext{th}}$ component to reconstruct data point ${f x}^{ ext{i}}$

Image features

Image as grid of n x m pixels

Find representative component features as pixel patterns

Cartoon face example:

 $u^1 \bigcirc \bigcirc$

 \approx

 u^4

Add relevant face components 1000-pixel image becomes 6 co-efficients Estimate is fairly close to actual image

Component analysis

Each data point \mathbf{x}^i in D can be reconstructed as sum of components \mathbf{u} :

$$\bullet \boldsymbol{x^i} = \sum_{q=1}^T z_q^i \boldsymbol{u}^q$$

 ${}^ullet z_q^i$ is weight on ${\bf q}^{
m th}$ component to reconstruct data point ${f x}^{
m i}$

10

Evaluating components

Components learned in order of descriptive power

Compute reconstruction error for all data by using first r components:

$$error = \sum_{i} \left(\sum_{j} \left(\mathbf{x}_{j}^{i} - \sum_{q=1}^{r} z_{q}^{i} \mathbf{u}_{j}^{q} \right)^{2} \right)$$

1

Component analysis: examples

 $\boldsymbol{x}^i = \sum_{i=1}^T z_q^i \boldsymbol{u}^q$

"Eigenfaces" – learned from set of face images

u: nine components

x⁴: data reconstructed

 $z_1 u^1 + ...$

Types of component analysis

Capture links between features as "components"

- Principal component analysis (PCA)
- Independent component analysis (ICA)
- Non-negative matrix factorization (NMF)

Principal component analysis (PCA)

Describe every \mathbf{x}^i with small set of components $\mathbf{u}^{1:Q}$

Use same \mathbf{u}^1 , ... \mathbf{u}^T for all \mathbf{x}^i

All components orthogonal:

$$(\mathbf{u}^i)^T \mathbf{u}^j = 0 \quad \forall i \neq j$$

$$\boldsymbol{x^i} = \sum_{q=1}^T z_q^i \boldsymbol{u}^q$$

Idea of learning in PCA

1. $D = \{x^1, ..., x^n\}$, data 0-center

2. Component index: q=1

3. Loop

• Find direction of highest variance: uq

• Ensure $|\boldsymbol{u}^q| = 1$

• Remove
$$\mathbf{u_q}$$
 from data:
$$D = \left\{ \mathbf{x^1} - z_q^1 \mathbf{u}^q, \cdots, \mathbf{x^n} - z_q^n \mathbf{u}^q \right\}$$

 $(\mathbf{u}_i)^T \mathbf{u}_i = 0 \quad \forall i \neq j$

Thus, we guarantee $z_i^i = \boldsymbol{u}_i^T \boldsymbol{x}^i$

Independent component analysis (ICA)

Describe every xi with small set of components u^{1:T}

Can use different u¹, ... u^Q for each xⁱ

No orthogonality constraint:

$$(\mathbf{u}^i)^T \mathbf{u}^j \neq 0 \quad \forall i \neq j$$

$$x^i = \sum_{q=1}^T z_q^i u^q$$

Idea of learning ICA

- 1. $D = \{x^1, ..., x^n\}$, data 0-center
- 2. Component index: q=1
- 3. Loop
- Find next most common group across data points
- ullet Find component direct for group $oldsymbol{u}^q$
 - Ensure $|{\pmb u}^q|=1$

We cannot guarantee $\mathbf{z}_j^i = \mathbf{u}_j^T \mathbf{x}^i$

Non-negative matrix factorization (NMF)

Describe every \mathbf{x}^i with small set of components $\mathbf{u}^{1:T}$

All components and weights non-negative

$$\mathbf{u}^{l} \geq 0, \ z_{q}^{l} \geq 0 \ \forall i, q$$

$$x^i = \sum_{q=1}^T z_q^i u^q$$

Comparing component analysis

PCA

- Represent each data point **x** with low number of components
- ullet All components used to reconstruct each data point ${f x}$

ICA / NMF

- ullet Represent each data point ${\bf x}$ with low number of components
- Subset of components used to reconstruct each data point **x**