Dimensionality reduction

CISC 5800
Professor Daniel Leeds

Opening note on dimensional differences

Each dimension corresponds to a feature/measurement
Magnitude differences for each measurement (e.g., animals):

- x_{1} - speed (mph) 0-100
- x_{2} - weight (pounds) 10-1000
- x_{3} - size (feet) 2-20

Problem for learning:

$$
w_{j} \leftarrow w_{j}+\varepsilon x_{j}^{i}\left(y^{i}-g\left(w^{T} x^{i}\right)\right)-\frac{w_{j}}{\lambda}
$$

Normalize: $r_{1}=\frac{x_{1}-\mu_{1}}{a_{1}}$ or $r_{1}=\frac{x_{1}-\mu_{1}}{\max -\min }$

The risks of too-many dimensions

Training vs. testing

- Training: learn parameters from set of data in each class
- Testing: measure how often classifier correctly identifies new data
- More training reduces classifier error ε
- More gradient ascent steps
- More learned feature
- Too much training causes worse testing error - overfitting

training epochs

Goal: High Performance, Few Parameters

- "Information criterion": performance/parameter trade-off
- Variables to consider:
- L likelihood of train data after learning
- k number of parameters (e.g., number of features)
- m number of points of training data
- Popular information criteria:
- Akaike information criterion AIC: $\log (\mathrm{L})-\mathrm{k}$
-Bayesian information criterion $\underline{\text { BIC: }} \log (\mathrm{L})-0.5 \mathrm{k} \log (\mathrm{m})$

Feature removal

- Start with feature set: $F=\left\{x_{1}, \ldots, x_{k}\right\}$
- Find classifier performance with set F : perform(F)
- Loop
- Find classifier performance for removing feature $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}$: $\operatorname{argmax} \mathrm{x}_{\mathrm{i}}$ perform $\left(\mathrm{F}-\mathrm{x}_{\mathrm{i}}\right)$
- Remove feature that causes least decrease in performance:
$\mathrm{F}=\mathrm{F}-\mathrm{x}_{\mathrm{i}}$
AIC: $\log (\mathrm{L})-\mathrm{k}$
BIC: $\log (\mathrm{L})-0.5 \mathrm{k} \log (\mathrm{m})$
Repeat, using AIC or BIC as termination criterion
- Find classifier performance for just set of 1 feature: $\operatorname{argmax}_{i} \operatorname{perform}\left(\left\{\mathrm{x}_{\mathrm{i}}\right\}\right)$
- Add feature with highest performance: $\mathrm{F}=\left\{\mathrm{x}_{\mathrm{i}}\right\}$
- Loop
- Find classifier performance for adding one new feature: argmax ${ }_{i}$ perform ($\mathrm{F}+\left\{\mathrm{x}_{\mathrm{i}}\right\}$)
- Add to F feature with highest performance increase: $\mathrm{F}=\mathrm{F}+\left\{\mathrm{x}_{\mathrm{i}}\right\}$

Repeat, using AIC or BIC as termination criterion

Capturing links between features

With large number of features,

Defining new feature axes

- Identify a common trend

$$
u^{1}=\left[\begin{array}{l}
0.91 \\
0.45
\end{array}\right]
$$

- Map data onto new dimension $\boldsymbol{u}^{\mathbf{1}}$
-

Defining new feature axes

Defining data points with new axes

Component analysis

Each data point \boldsymbol{x}^{i} in D can be reconstructed as sum of components \boldsymbol{u} :

- $\boldsymbol{x}^{\boldsymbol{i}}=\sum_{q=1}^{T} z_{q}^{i} \boldsymbol{u}^{q}$
- z_{q}^{i} is weight on $q^{\text {th }}$ component to reconstruct data point $\mathbf{x}^{\mathbf{i}}$

Image features

Image as grid of $\mathrm{n} \times \mathrm{m}$ pixels

Find representative component features as pixel patterns

Cartoon face example:

Component analysis

Each data point \boldsymbol{x}^{i} in D can be reconstructed as sum of components u :

- $x^{i}=\sum_{q=1}^{T} z_{q}^{i} \boldsymbol{u}^{q}$
- z_{q}^{i} is weight on $\mathrm{q}^{\text {th }}$ component to reconstruct data point \mathbf{x}

Evaluating components

Components learned in order of descriptive power

Compute reconstruction error for all data by using first r components:

$$
\text { error }=\sum_{i}\left(\sum_{j}\left(x_{j}^{i}-\sum_{q=1}^{r} z_{q}^{i} \boldsymbol{u}_{j}^{q}\right)^{2}\right)
$$

Component analysis: examples

$$
\boldsymbol{x}^{i}=\sum_{q=1}^{T} z_{q}^{i} \boldsymbol{u}^{q}
$$

"Eigenfaces" - learned from set of face images

Types of component analysis

Capture links between features as "components"

- Principal component analysis (PCA)
- Independent component analysis (ICA)
- Non-negative matrix factorization (NMF)

Principal component analysis (PCA)

Describe every \mathbf{x}^{i} with small set of components $\mathbf{u}^{1: Q}$
Use same $\mathbf{u}^{1}, \ldots \mathbf{u}^{\boldsymbol{\top}}$ for all $\mathbf{x}^{\mathbf{i}}$
All components orthogonal:
$\left(\boldsymbol{u}^{i}\right)^{T} \boldsymbol{u}^{j}=0 \quad \forall i \neq j$
$\boldsymbol{x}^{i}=\sum_{q=1}^{T} z_{q}^{i} \boldsymbol{u}^{q}$

Independent component analysis (ICA)

Describe every $\mathbf{x}^{\mathbf{i}}$ with small set of components $\mathbf{u}^{1: T}$

Can use different $\mathbf{u}^{\mathbf{1}}, \ldots \mathbf{u}^{\mathbf{Q}}$ for each $\mathbf{x}^{\mathbf{i}}$
No orthogonality constraint:

$$
\begin{aligned}
& \left(\boldsymbol{u}^{i}\right)^{T} \boldsymbol{u}^{j} \neq 0 \quad \forall i \neq j \\
\boldsymbol{x}^{i}= & \sum_{q=1}^{T} z_{q}^{i} \boldsymbol{u}^{q}
\end{aligned}
$$

Non-negative matrix factorization (NMF)

Describe every \mathbf{x}^{i} with small set of components $\mathbf{u}^{1: T}$

All components and weights non-negative
$\boldsymbol{u}^{i} \geq 0, z_{q}^{i} \geq 0 \quad \forall i, q$
$\boldsymbol{x}^{i}=\sum_{q=1}^{T} z_{q}^{i} \boldsymbol{u}^{q}$

Comparing component analysis

PCA

- Represent each data point \mathbf{x} with low number of components
- All components used to reconstruct each data point \mathbf{x}

ICA / NMF

- Represent each data point \mathbf{x} with low number of components
- Subset of components used to reconstruct each data point \mathbf{x}

