Hidden Markov Models

CISC 5800
Professor Daniel Leeds

Representing sequence data

- Spoken language
- DNA sequences
- Daily stock values

Example: spoken language
F? r plu? fi?e is nine

- Between F and r expect a vowel: "aw", "ee", "ah"; NOT "oh", "uh"
- At end of "plu" expect consonant: "g", "m", "s"; NOT "d", "p"

Markov Models

Start with:

- n states: $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}$
- Probability of initial start states: Π_{1}, \ldots, Π_{n}
- Probability of transition between states: $A_{i, j}=P\left(q_{t}=s_{i} \mid q_{t-1}=s_{j}\right)$

$$
\Pi_{A}=0.3, \Pi_{B}=0.7
$$

A dice-y example

- Two colored die

- What is the probability we start at s_{A} ? 0.3
- What is the probability we have the sequence of die choices:

$$
s_{A}, s_{A} ? \quad 0.3 \times 0.8=0.24
$$

- What is the probability we have the sequence of die choices:

$$
s_{B}, s_{A}, s_{B}, s_{A} ? \quad 0.7 \times 0.2 \times 0.2 \times 0.2=0.0056
$$

Hidden Markov Models

- Actual state q "hidden" Probability observe value x_{i}
- State produces visible data o: $\phi_{i, j}=P\left(o_{t}=x_{i} q_{t} s_{j}\right)$
- State produces visible data o: $\phi_{i, j}=P\left(o_{t}=x_{i} \mid q_{t}=s_{j}\right)$
- Compute

$$
P(\boldsymbol{O}, \boldsymbol{Q} \mid \boldsymbol{\theta})=p\left(q_{1} \mid \pi\right)\left(\prod_{t=2}^{T} p\left(q_{t} \mid q_{t-1}, \boldsymbol{A}\right)\right)\left(\prod_{t=1}^{T} p\left(o_{t} \mid q_{t}, \boldsymbol{\phi}\right)\right)
$$

 observation sequence, given states

Deducing die based on observed "emissions"

0	$\mathrm{P}\left(\mathrm{o} \mid \mathrm{s}_{\mathrm{A}}\right)$	$\mathrm{P}\left(\mathrm{o} \mid \mathrm{s}_{\mathrm{B}}\right)$
Each color is biased		
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2

Intuition - balance transition and emission probabilities
Observed numbers: 554565254556 - the 2 is probably from s_{B} Observed numbers: 554565213321 - the 2 is probably from s_{A}

Deducing die based on observed "emissions"

- We see: $5 \quad$ What is probability of $o=5, q=B$ (blue)

$$
\Pi_{\mathrm{B}} \phi_{5, \mathrm{~B}}=0.7 \times 0.2=0.14
$$

- We see: $5,3 \quad$ What is probability of $\mathbf{o}=5,3, \mathbf{q}=B, B$? $\Pi_{\mathrm{B}} \phi_{5, \mathrm{~B}} \mathrm{~A}_{\mathrm{B}, \mathrm{B}} \phi_{3, \mathrm{~B}}=0.7 \times 0.2 \times 0.8 \times 0.1=0.0112$

Goal: calculate most likely states given

 observable dataDefine and use $\delta_{t}(i)$

$$
\delta_{t}(i)=\max _{q_{1} \cdots g_{t-1}} p\left(q_{1} \ldots q_{t-1} \wedge q_{t}=s_{i} \wedge O_{1} \ldots O_{t}\right)
$$

$\delta_{t}(i)$: max possible value of $P\left(\mathrm{q}_{1}, . ., \mathrm{q}_{t}, \mathrm{o}_{1}, . ., \mathrm{o}_{\mathrm{t}}\right)$ given we insist $\mathrm{q}_{\mathrm{t}}=\mathrm{s}_{\mathrm{i}}$

Find the most likely path from q_{1} to q_{t} that

- $q_{t}=s_{i}$
- Outputs are $\mathrm{o}_{1}, \ldots, \mathrm{o}_{\mathrm{t}}$

Viterbi algorithm: bigger picture

Compute all $\delta_{t}(i)$'s

- At time $\mathrm{t}=1$ compute $\delta_{1}(i)$ for every state
- At time $\mathrm{t}=2$ compute $\delta_{2}(i)$ for every state i (based on $\delta_{1}(i)$ values)
-...
- At time $\mathrm{t}=\mathrm{T}$ compute $\delta_{T}(i)$ for every state i (based on $\delta_{T-1}(i)$ values)

Find states going from $\mathrm{t}=\mathrm{T}$ back to $\mathrm{t}=1$ to lead to $\max \delta_{T}(i)$

- Now find state j that gives maximum value for $\delta_{T}(j)$
- Find state k at time T-1 used to maximize $\delta_{T}(j)$
- ...
- Find state z at time 1 used to maximize $\delta_{2}(y)$

Viterbi algorithm: $\delta_{t}(i)$
$\delta_{1}(i)=\Pi_{i} P\left(o_{1} \mid q_{1}=s_{i}\right)=\Pi_{i} \phi_{1, i}$
$\delta_{t}(i)=P\left(o_{t} \mid q_{t}=s_{i}\right) \max \delta_{t-1}(j) P\left(q_{t}=s_{i} \mid q_{t-1}=s_{j}\right)=$ $\boldsymbol{\phi}_{\boldsymbol{o}_{\boldsymbol{t}}, \boldsymbol{i}} \max _{\boldsymbol{j}} \boldsymbol{\delta}_{\boldsymbol{t}-\mathbf{1}}\left({ }_{j}^{j}\right) \boldsymbol{A}_{\boldsymbol{i}, \boldsymbol{j}}$
$\mathrm{P}\left(\mathrm{Q}^{*} \mid \mathrm{O}\right)=\operatorname{argmax}_{\mathrm{Q}} \mathrm{P}(\mathrm{Q} \mid \mathrm{O})=\operatorname{argmax}_{\mathrm{i}} \delta_{t}(i)$

Viterbi in action: observe " $5,1,1$ "					$\begin{aligned} & \delta_{3}(A): \\ & .3 \times \max (.8 \times .0084, .2 \times .0112) \\ & =.3 \times .00672=.00202 \end{aligned}$
$\Pi_{A}=0.3, \Pi_{B}=0.7$		\bigcirc	$\mathrm{P}\left(\mathrm{o} \mid \mathrm{s}_{\mathrm{A}}\right)$	$\mathrm{P}\left(\mathrm{o} \mid \mathrm{s}_{\mathrm{B}}\right)$	
		1	. 3	. 1	
		2	. 2	. 1	
		3	. 2	. 1	
		4	. 1	. 2	
		5	. 1	. 2	$\begin{aligned} & \delta_{3}(B): \\ & .1 \times \max (.2 \times .0084, .8 \times .0112) \\ & =.1 \times .00896=.000896 \end{aligned}$
		6	. 1	. 3	
	$t=1 \quad\left(o_{1}=5\right)$			$\left(\mathrm{O}_{2}=1\right)$	$t=3 \quad\left(\mathrm{O}_{3}=1\right)$
$\mathrm{q}_{\mathrm{t}}=\mathrm{s}_{\mathrm{A}}$. $3 \mathrm{x} .1=.03$			(from B)	. 00202 (from A)
$\mathrm{q}_{\mathrm{t}}=\mathrm{s}_{\text {B }}$. $7 x .2=.14$			12 (from B)	. 000896 (from B)

First, assume we know the states
Learning HMM parameters: π_{i}
\mathbf{x}^{1} : $A, B, A, A, B \quad$ Compute MLE for each parameter
$\begin{aligned} & \mathbf{x}^{2}: \\ & \mathbf{x}^{3}: \\ & \mathrm{B}, \mathrm{B}, \mathrm{B}, \mathrm{B}, \mathrm{A}, \mathrm{A}, \mathrm{B}\end{aligned} \quad \pi^{*}=\underset{\pi}{\operatorname{argmax}} \prod_{k} \pi\left(q_{1}\right) \prod_{t=2}^{T} p\left(q_{t} \mid q_{t-1}\right) \prod_{t=1}^{T} p\left(o_{t} \mid q_{t}, \boldsymbol{\phi}\right)$

$$
\pi_{A}=\frac{\# D\left(q_{1}=s_{A}\right)}{\# D}
$$

First, assume we know the states
Learning HMM parameters: $\phi_{i, j}$
$\mathbf{x}^{1}: A, B, A, A, B$ Compute MLE for each parameter
$0^{1}: 2,5,3,3,6$
$\left.\begin{array}{l}\left.\begin{array}{l}\mathbf{x}^{2}: \mathrm{B}, \mathrm{B}, \mathrm{B} \\ \mathbf{o}^{2}: 4,5,1 \\ \mathrm{~A} \\ 3\end{array}\right] \\ \mathbf{2}\end{array}\right] \quad \boldsymbol{\phi}^{*}=\underset{\phi}{\operatorname{argmax}} \prod_{k} \pi\left(q_{1}\right) \prod_{t=2}^{T} p\left(q_{t} \mid q_{t-1}\right) \prod_{t=1}^{T} p\left(o_{t} \mid q_{t}, \boldsymbol{\phi}\right)$
$x^{3}: A \mid A, B, B$
$0^{3}: 1,4,5,2,6$
!

$$
\phi_{i, j}=\frac{\# D\left(o_{t}=i, q_{t}=s_{j}\right)}{\# D\left(q_{t}=s_{j}\right)}
$$

First, assume we know the states
Learning HMM parameters: $\mathrm{A}_{\mathrm{i}, \mathrm{j}}$

Compute MLE for each parameter
$\begin{aligned} & \mathbf{x}^{1}: \widehat{\mathrm{A}, \mathrm{B}, \mathrm{A}, \overline{\mathrm{A}, \mathrm{B}}} \\ & \mathbf{x}^{2}: \mathrm{B}, \mathrm{B}, \mathrm{B}, \mathrm{A}, \mathrm{A} \\ & \mathbf{x}^{3}:(\mathrm{A}, \mathrm{A}, \mathrm{B}, \mathrm{A}, \mathrm{B}\end{aligned} A^{*}=\underset{\mathrm{A}}{\operatorname{argmax}} \prod_{k} \pi\left(q_{1}\right) \prod_{t=2}^{T} p\left(q_{t} \mid q_{t-1}\right) \prod_{t=1}^{T} p\left(o_{t} \mid q_{t}, \boldsymbol{\phi}\right)$

$$
A_{i, j}=\frac{\# D\left(q_{t}=s_{i}, q_{t-1}=s_{j}\right)}{\# D\left(q_{t-1}=s_{j}\right)}
$$

Challenges in HMM learning

Learning parameters (π, A, ϕ) with known states is not too hard BUT usually states are unknown

If we had the parameters and the observations, we could figure out the states: \quad Viterbi $P\left(Q^{*} \mid O\right)=\operatorname{argmax}_{Q} P(Q \mid O)$

Expectation-Maximization, or "EM"

Problem: Uncertain of y^{i} (class), uncertain of $\boldsymbol{\theta}^{i}$ (parameters)
Solution: Guess y^{i}, deduce $\boldsymbol{\theta}^{i}$, re-compute y^{i}, re-compute $\boldsymbol{\theta}^{i} \ldots$ etc. OR: Guess $\boldsymbol{\theta}^{i}$, deduce y^{i}, re-compute $\boldsymbol{\theta}^{i}$, re-compute y^{i}

Will converge to a solution

E step: Fill in expected values for missing labels y
M step: Regular MLE for $\boldsymbol{\theta}$ given known and filled-in variables
Also useful when there are holes in your data

Details of forward probability

Forward probability: $\boldsymbol{\alpha}_{\boldsymbol{t}}(\boldsymbol{i})=P\left(\boldsymbol{o}_{1} \ldots \boldsymbol{o}_{\boldsymbol{t}} \wedge \boldsymbol{q}_{\boldsymbol{t}}=\boldsymbol{s}_{\boldsymbol{i}}\right)$

$$
\begin{gathered}
\alpha_{1}(i)=\phi_{o_{1}, i} \pi_{i}=P\left(o_{1} \mid q_{1}=s_{i}\right) P\left(q_{1}=s_{i}\right) \\
\alpha_{t}(i)=\phi_{o_{t}, i} \sum_{j} A_{i, j} \alpha_{t-1}(j) \\
\alpha_{t}(i)=P\left(o_{t} \mid q_{t}=s_{i}\right) \sum_{j} P\left(q_{t}=s_{i} \mid q_{t-1}=s_{j}\right) \alpha_{t-1}(j)
\end{gathered}
$$

Computing states q_{t}

Instead of picking one state: $\mathrm{q}_{\mathrm{t}}=\mathrm{s}_{\mathrm{i}}$, find $\mathrm{P}\left(\mathrm{q}_{\mathrm{t}}=\mathrm{s}_{\mathrm{i}} \mid \mathbf{0}\right)$

$$
P\left(q_{t}=s_{i} \mid o_{1}, \cdots, o_{T}\right)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j} \alpha_{t}(j) \beta_{t}(j)}
$$

Forward probability: $\alpha_{t}(i)=P\left(\boldsymbol{o}_{1} \ldots \boldsymbol{o}_{t} \wedge \boldsymbol{q}_{t}=\boldsymbol{s}_{i}\right)$
Backward probability: $\boldsymbol{\beta}_{\boldsymbol{t}}(\boldsymbol{i})=\boldsymbol{P}\left(\boldsymbol{o}_{\boldsymbol{t}+\mathbf{1}} \ldots \boldsymbol{o}_{\boldsymbol{T}} \mid \boldsymbol{q}_{\boldsymbol{t}}=\boldsymbol{s}_{\boldsymbol{i}}\right)$

Details of backward probability

Backward probability: $\boldsymbol{\beta}_{\boldsymbol{t}}(\boldsymbol{i})=\boldsymbol{P}\left(\boldsymbol{o}_{\boldsymbol{t}+\boldsymbol{1}} \ldots \boldsymbol{o}_{\boldsymbol{T}} \mid \boldsymbol{q}_{\boldsymbol{t}}=\boldsymbol{s}_{\boldsymbol{i}}\right)$

$$
\begin{gathered}
\beta_{t}(i)=\sum_{j} A_{j, i} \phi_{o_{t+1}, j} \beta_{t+1}(j) \\
\beta_{t}(i)=\sum_{j} P\left(q_{t+1}=s_{j} \mid q_{t}=s_{i}\right) P\left(o_{t+1} \mid q_{t+1}=s_{j}\right) \beta_{t+1}(j)
\end{gathered}
$$

$$
\text { Final } \beta: \beta_{T-1}(i)
$$

$$
\begin{aligned}
& \beta_{T-1}(i)=\sum_{j} A_{j, i} \phi_{o_{T}, j} \\
& =P\left(a_{T}=s_{i} \mid g_{T}=s_{i}\right) P(
\end{aligned}
$$

$$
=P\left(q_{T}=s_{j} \mid q_{T}=s_{i}\right) P\left(o_{T} \mid q_{T}=s_{j}\right)
$$

E-step: State probabilities

One state:

$$
P\left(q_{t}=s_{i} \mid o_{1}, \cdots, o_{T}\right)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j} \alpha_{t}(j) \beta_{t}(j)}=S_{t}(i)
$$

Two states in a row:

$$
\begin{aligned}
& P\left(q_{t}=s_{j}, q_{t+1}=s_{i} \mid o_{1}, \cdots, o_{T}\right)=\frac{\alpha_{t}(j) A_{i, j} \phi_{o_{t+1}, i} \beta_{t+1}(i)}{\sum_{f} \sum_{g} \alpha_{t}(g) A_{f, g} \phi_{o_{t+1}, f} \beta_{t+1}(f)} \\
& =S_{t}(i, j)
\end{aligned}
$$

Recall: when states known

$$
\begin{aligned}
& \pi_{A}=\frac{\# D\left(q_{1}=s_{A}\right)}{\# D} \\
& A_{i, j}=\frac{\# D\left(q_{t}=s_{i}, q_{t-1}=s_{j}\right)}{\# D\left(q_{t-1}=s_{j}\right)} \\
& \phi_{i, j}=\frac{\# D\left(o_{t}=i\right)}{\# D\left(q_{t}=s_{j}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { M-step } \\
& A_{i, j}=\frac{\sum_{t} s_{t}(i, j)}{\Sigma_{t} s_{t}(j)} \\
& \phi_{o b s, i}=\frac{\Sigma_{t \mid o_{t}=o b s} s_{t}(i)}{\sum_{t} s_{t}(i)} \\
& \pi_{i}=S_{1}(i)
\end{aligned}
$$

Review of HMMs in action

$$
\begin{aligned}
& \text { Known states: } \\
& \text { - } \pi_{A}=\frac{\# D\left(q_{1}=s_{A}\right)}{\# D} \\
& -A_{i, j}=\frac{\# D\left(q_{t}=s_{i}, q_{t-1}=s_{j}\right)}{\# D\left(q_{t-1}=s_{j}\right)} \\
& \cdot \phi_{i, j}=\frac{\# D\left(o_{t}=i \text { AND } q_{t}=s_{j}\right)}{\# D\left(q_{t}=s_{j}\right)}
\end{aligned}
$$

For classification, find highest probability class given features
Features for one sound:

- $\left[q_{1}, o_{1}, q_{2}, o_{2}, \ldots, q_{T}, o_{T}\right]$

Conclude word:

Generates states:

