
Final practice part 2 
 
1. Consider the neural network below. 

  

The initial weights are: 
Layer 1:  𝑤1,1

1 = −10 𝑤1,2
1 = 0 𝑤1,3

1 = −5 𝑤1,4
1 = 10 𝑏1

3 = 4  Unit 1 

   𝑤2,1
1 = 20 𝑤2,2

1 = 0 𝑤2,3
1 = 10 𝑤2,4

1 = −5 𝑏1
3 = 4  Unit 2 

   𝑤3,1
1 = 0 𝑤3,2

1 = −10 𝑤3,3
1 = 0 𝑤3,4

1 = 20 𝑏1
3 = 4  Unit 3 

Layer 2:  𝑤1,1
2 = 5 𝑤1,2

2 = 10 𝑤1,3
2 = 0 𝑏1

3 = −2 Unit 1 

   𝑤2,1
2 = 0 𝑤2,2

2 = −10 𝑤2,3
2 = 15 𝑏1

3 = −2 Unit 2 

Layer 3:  𝑤1,1
3 = 10 𝑤1,2

3 = −20 𝑏1
3 = 5 

 
Compute the output given the following inputs: 
 
(a) Compute 𝑟1

1, 𝑟2
1, 𝑟3

1 .  Given the inputs: x1= 5   x2= -10    x3= 10    x4= 0 
 
 
(b) Compute 𝑟1

3 .  Given the lower-layer outputs: 𝑟1
2=0.1 ,   𝑟2

2=0.6 
 
 
(c)  Compute 𝑟2

2 .  Given the lower-layer outputs: 𝑟1
1=0.1 ,   𝑟2

1=0.3,   𝑟3
1=0.6 

 
 
Compute the change in the specified weight based on the following input/outputs. In each case, 
presume the starting weight is as specified in the original list above. Assume 𝜀 = 1 
 
(d) Compute ∆𝑤1,2

3 . Given the layer 2 rates: 𝑟1
2=0.2 and 𝑟2

2=0.8 ; layer 3 rates: 𝑟1
3=0.1 ; the 

desired output from 𝑟1
3 is 1.0 

 
 
(e) Compute ∆𝑤1,2

1 . Given the features: x1=10, x2=-5, x3=0, x4=15;  𝑟1
1=0.5, 𝑟2

1=0.2, 𝑟3
1=0.8;  

delta values: 𝛿1
2= -0.005,  𝛿2

2= 0.01 
 
 
 



2. For each of the following functions f(x; h), compute the value of h that will maximize f(x; h), 
assuming each function has a single maximum and no minimum. 
 

(a) f1(x; h) = ∑ (−ℎ2 − 10ℎ𝑥𝑖 + 12𝑥𝑖
2)𝑖  

 
 

(b) f2(x; h) = 𝑒−(ℎ
3+𝑥2) = exp(−(ℎ2 + 𝑥2)) 

 
 

(c) f3(x;h) = ∏ 3ℎ(𝑥
𝑖)

𝑖  
 
 
 
3. Consider the following Gaussian likelihoods for features x1, x2, and x3 given class = 1 (blue 
curves) or class = 0 (red curves). 

    
 
i. We wish to multiply these likelihoods together to compute P(x|y). Which type of classification 
is this: 
(a) Naïve Bayes Max-Posterior classification 

(b) Non-Naïve Bayes Max-Likelihood classification 

(c) Naïve Bayes Max-Posterior classification 
(d) Naïve Bayes Max-Likelihood classification 

(e) Support Vector Machine classification 
 
 
 
ii. For the feature values below, which class is more probable (based on P(x|y) calculated from 
the plots above)? 
(a) x1=5 x2=7  x3=6 
 
 
(b) x1=8 x2=8  x3=6 
 
 
 



 
iii. Which class is more probable if we also incorporate the following prior: 
P(y=0) = 0.1  P(y=1) = 0.9 
to compute P(y|x)? 
(a) x1=4 x2=5  x3=9 
 
 
 
(b) x1=6 x2=7  x3=7 
 
 
 
 
iv. Provide a prior that would make class 1 more probable if the x values are: 
x1=6  x2=8  x3=6 
 
 
 
4. Using each of the following kernel functions, compute the result of K(x1, x2), for the specified 
input vectors. 
 
 

K(c,d)=2−(𝒄
𝑇𝒅+2) 

 

(a) 𝒄 = [
4
0
−2

]  𝒅 = [
0
0
1.5

] 

 
 

(b) 𝒄 = [
1
0.5
−2

]  𝒅 = [
3
−2
−1

] 

 
 
K(c,d)=(𝒄𝑇𝒅 − 𝟒)2 + 10𝒄𝑇𝒅 
 

(c) 𝒄 = [
0
3
−2

]  𝒅 = [
1
0
2
] 

 

(d) 𝒄 = [
−1
2
−1

]  𝒅 = [
3
0
−1

] 

 
 



 
5.  Consider the following training data. Red circles are class 0, blue x’s are class 1, and all other 
shapes (triangles, stars, diamonds) are data points with known feature values but unknown 
labels. 

 
Using the EM approach for learning, and assuming that we use a linear logistic classifier, how 
will the black triangles, diamonds, and star data points be used for learning? In the first round 
of EM, what y value do you expect each data point to be assigned, or no value at all? 
 
 
 
 
6. Consider the classification problem with the following features and classes. 
 
Class Person-type:  Teenager, YoungProfessional, Adult, SeniorCitizen 
Features: 
Daily-time-online:  1-2 hours, 3-4 hours, 5-8 hours 
Number-of-online-friends: 0-10, 10-50, 50-200, 200-1000 
Favored content: News, SocialPosts, Education, Entertainment 
Money-spent-online: None, $1-$50, $50-$100, $100-$500, $500+ 
 
(a) How many parameters given Naïve Bayes a posteriori classification? 
 
 

Consider a classifier hypothesis set of squares. A single hypothesis h is a square 

with a fixed size and location. Four example hypotheses are shown.  

 
 

And here is examples of h that will help shatter a set of three data points. 



 
 

For each data set: 

- Pick four points and list a diochotomy that is not possible with four of the 

points provided. 

  

Example 1: 

 
 

Example 2: 

 
 

Example 3: 

 



 

 

What is the VC dimension for a cube classifier, where each h is a cube of some 

fixed size and fixed location (x1, x2, x3), where class 1 is assigned either to inside or 

outside the cube, and class 0 is assigned to the other region. We assume you can 

select points from anywhere in the 3D feature space. 

 

You have data with three features and wish to use a decision tree to classify your 

data (should have been covered in your past data mining class). For example, a 

two layer decision tree may look like this: 

   if x1 > 0.5 then: if x2<-1 :  y=1 

   else:  y=0 

   else:   if x3 > 3: y=0 

   else:  y=1  

(First true-false measurement leads to second true-false, leading to a final class 

label.) We assume you can select points from anywhere in the 3D feature space. 

 

What is the VC dimension for a one-layer decision tree? 

 

What is the VC dimension for a two-layer decision tree? – I AM WITHDRAWING 

THIS QUESTION; IT IS MORE CHALLENGING THAN INTENDED 

 

 

 

 

Consider the following HMM. It uses a thermometer to attempt to predict the 

weather. 

 

We begin with the following estimate for our HMM parameters: 

Π𝑠𝑛𝑜𝑤 = 0.2  Π𝑟𝑎𝑖𝑛 = 0.3  Π𝑠𝑢𝑛𝑛𝑦 = 0.3  Π𝑐𝑙𝑜𝑢𝑑𝑦 = 0.2 

 



 
𝜙𝑜,𝑖:  

 Cold Mild Hot 

Snow 0.8 0.2 0 

Rain 0.5 0.3 0.2 
Sunny 0 0.3 0.7 

Cloudy 0.2 0.7 0.1 
 

 
 

(We COULD actually learn a Gaussian function for the temperature for each state. 

Here, we’ll just do a discrete probability table.) 

 

We receive a new sequence of temperatures and wish to update our HMM 

parameters. 

 

Sequence: 

Cold Cold Hot Mild Hot 

 

 

Correct alpha values are in black. Made-up alpha values are in color parentheses. 

You will have to find the real values below. You can use the made-up value in 

calculating St values further below. 

𝛼𝑡(𝑖)  

t: 1 2 3 4 5 

Snow ?? (.11) .08 0 .00011 0 

Rain 0.15 ?? (.04) .0082 .0017 .00049 
Sunny ?? (.08) 0 .0056 ?? (.0033) .0020 

Cloudy 0.04 .027 ?? (.0044) .0053 .00030 
 

 

Correct beta values are in black. Made-up beta values are in color parentheses. 

You will have to find the real values below. You can use the made-up value in 

calculating St values further below. 



𝛽𝑡(𝑖)  

t: 1 2 3 4 
Snow .0067 .0062 .13 .05 

Rain .0097 ?? (.011) .13 ?? (.08) 

Sunny .0028 .087 ?? (.11) .52 
Cloudy .0062 .047 .121 ?? (.11) 

 

 

Find the missing values in the tables above. 

 

 

What are the values: 

 

S2(cloudy) 

 

S3(snow,sunny) 

 

S1(rain) 

 

 

 

Now let us presume the following S values (these are made-up values): 

St(i) 

t 1 2 3 4 5 
Snow 0.3 0.3 0.1 0.2 0.1 

Rain 0.5 0.4 0.3 0.3 0.2 
Sunny 0.1 0.1 0.3 0.1 0.4 

Cloudy 0.1 0.2 0.3 0.4 0.3 
 

 

St(i,j) 

t 1 2 3 4 
Rain, Cloudy .1 .4 .3 .2 

Sunny, Rain 0 0 0 0 
 



 

Π𝑟𝑎𝑖𝑛    Π𝑐𝑙𝑜𝑢𝑑𝑦 

 

Arain,cloudy  Asunny,rain 

 

𝜙ℎ𝑜𝑡,𝑟𝑎𝑖𝑛  𝜙𝑚𝑖𝑙𝑑,𝑠𝑢𝑛𝑛𝑦   

 

 

 

Haven’t had time to include CNN and Guass mixture questions, but know: 

- What is convolution? 

- What is the max spatial pooling? 

- What is normalization? 

- How is sound converted to a picture for CNN? 

 

 Rules for E and M step in Gauss mixture models, and understand how we 

got there. 

 


