
Final Project 

Due May 9 

 

For the final project, you will take a data set and use two classification approaches to 
distinguish classes in your data. For one of the classifications, you will be required to 
implement the classifier and introduce adjustments to the classifier in an attempt to 
optimize its performance. This is a group project with 2-3 person. 

 

For the project you must: 

 Program functions to 
o extend at least one classification and learning method (the second method 

can be taken from publicly available software but MUST be credited as such) 
 Experiment with 

o two learning/classification methods 
o optimization of one learning/classification method  

 Report on your methods, results (accuracy and run-time), and conclusions in an 8-
15-page paper 

Your grade will be calculated as follows: 

 40% for code to implement a new classifier and optimizations of the classifier 
 30% for your report's discussion of your implementation (how the code work) and 

justification of any design/optimization choices you made 
 30% for your report's presentation of results (accuracies and run-times) and 

conclusions 

The data set:  
You may choose your own data set. However, you may be interested in using any of the 
three data sets listed below. 

 

Online News Popularity: 

You can use the "Online News Popularity" data set provided by University of 

California, Irvine. It uses 58 features to predict the number of times a web page is 

shared — ignoring the first two features and using the last feature as class indicator. 

Read over the documentation for the data set on the Irvine web site. All feature values 

in our .mat file are the same as the feature values listed in the documentation. 

Note there is no pre-determined "class" label; instead the final "feature" counts the 

number of visits for each page. You will have to pick a threshold for high versus 

low page shares — you are free to experiment with this threshold as well. To 

start, I suggest trying 1400 as share threshold. 

http://archive.ics.uci.edu/ml/datasets/Online+News+Popularity


 

SPECTF Heart Data Set: 

You can use the "SPECTF Heart Data Set" data set provided by University of 

California, Irvine. It uses 44 features to predict the presence of a heart condition — 

using the first feature as class indicator. Read over the documentation for the data set 

on the Irvine web site. All feature values in our .mat file are the same as the feature 

values listed in the documentation. 

You may download the data directly from the UC Irvine site, using the CSV files 

SPECTF.train and SPECTF.test. 

 

Adult data set: 

You can use the "Adult" data set provided by University of California, Irvine. It uses 

14 features to predict whether a person makes over $50K per year. Read over the 

documentation for the data set on the Irvine web site. All feature values in our .mat 

file are the same as the feature values listed in the documentation, except the class 

labels have been converted to 0 and 1 in our .mat file, as described below. 

 

The learners/classifiers:  
You must implement and expand one of the following. For your second learner/classifier, 
you may use a previously-implemented version of another of these methods; the second 
method may be taken from a Matlab toolbox or Python package, or downloaded from the 
internet): 

 Support vector machine 
 Neural Network 
 Bayes Network 
 PCA, ICA, or NMF in combination with a previously implemented learner/classifiers 
 Feature selection/removal in combination with Bayes classifier 

Key details on implementation for the traditional and expanded version of each 
method are provided at the bottom of this document. 

Experiments with settings/hyper-parameters for each method:  
As we have discussed in class, each classification/learning method potentially has a variety 
of settings and hyper-parameters to manipulate. Possible settings and hyper-parameters 
include: 

 Initialization values for parameters 
 Regularization strength 
 Update step size 
 Maximum number of permitted repeated iterations on training data 
 Slack variable strength 
 Number of neuron units 

http://archive.ics.uci.edu/ml/datasets/SPECTF+Heart
http://archive.ics.uci.edu/ml/datasets/SPECTF+Heart
http://archive.ics.uci.edu/ml/datasets/Adult


 Size of training data set (you will have to divide the data into testing and training 
sets; note, testing data set should stay the same for all learning conditions to ensure 
consistent evaluation) 

For each of the two classifier/learner methods, you are to experiment with at 
least two settings or hyper-parameters and report their effects on accuracy on 
test data and run-time for learning.  

For each classifier/learner method, you should try at least five different values per 
setting/hyper-parameter. For example, using gradient ascent to learn the SVM separator, 
you may vary ε step size and tolerance of error (“slack”) C. You can evaluate learning 
accuracy based on values: 

ε 0.001 0.01 0.1 1 10 0.01 0.01 0.01 0.01 

C 1 1 1 1 1 0.1 0.001 10 100 

This would constitute 5 different values for each of two hyper-parameters. 

 

The optimized/”improved” version for one of the methods: 

In this step, you need to choose one of the models you selected to make it a sophisticated 
version. The expanded version of each method is provided at the bottom of this document. 

 
You can choose the methods from the bottom list and you are also encouraged to make new 
optimization methods yourselves.  
 
In your report, you need to: 

 Illustrate how you experiment your optimization method on the original model. 
 Explain how the optimized model improves the performance of the original model, 

e.g, the accuracy of the model, the speed of modeling 
 Illustrate the advantage/disadvantage of your optimized model compared to your 

original model. 
 

Graded materials:  
You must submit: (1) Your complete Python code, (2) Your 8–15 page report  
 
Your code must include: 

 Commands you used to load/clean your data set, train your classifiers and test your 
classifiers. You may have a simple function to perform all these steps, or you may 
record these commands without a wrapping function 

 All relevant Methods/functions to implement/expand/optimize upon a learning and 
classification method.  

 A readme text file that explains how to run the functions you have written.  



 

Your report must include: 

 Introduction: Summary of the data and the methods you tried, and a brief preview of 
your final conclusions 

 Methods: Which methods you tried, how you adjusted the standard method to try to 
make it "better", what settings/hyper-parameters you used.  

 Results: Discuss the effects of using different learning methods, the effects of the 
changes you made to the traditional methods, and the effects of the learning 
settings/hyper-parameters. You must include at least one table/graph. More 
tables/graphs are welcome!  

 Conclusion: Comment on the take-away messages you have gotten from your 
experiments. 

Time commitment: This project should take you at least 50 hours over a month span. 

Due date: The project will be due May 9. 
 
 
 
 

Continue to the next page to read the details about the traditional implementation 
and improvements you are expected to make for your selected method 

 
 

  



Learning/classification methods in detail: 

You need to choose one of the five learning/classification models to implement and to 
further improve.  
 
1) SVM: 

- Traditional “dual” kernel implementation: Write function to find 𝜶 for support 
vectors. Run gradient ascent-or-descent to maximize: 

argmax
𝛼,𝛾,𝜆

∑ 𝛼𝑗

𝑗

−
1

2
∑ 𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝐾(𝒙𝑖, 𝒙𝑗)

𝑖,𝑗

− 𝛾1 max (0, ∑ 𝛼𝑗𝑦𝑗

𝑗

) − ∑ 𝜆𝑗 max(0, 𝛼𝑗)

𝑗

 

 
Note this optimization is mathematically derived from the version in homework 2, with 
some modifications, more commonly called the “dual” form of SVM optimization. The 
max(0, ∑ 𝛼𝑗𝑦𝑗

𝑗 ) term pushes for ∑ 𝛼𝑗𝑦𝑗
𝑗 = 0 and the max(0, 𝛼𝑗) terms push for 𝛼𝑗 ≥ 0 . 

 
Use at least the following two kernel definitions:  

K(x, v) = xTv   and   K(x,v) = exp (−
1

2𝜎2
(𝒙 − 𝒗)2) 

 
You also may choose to use the “logistic loss” function instead of the max function: 
Instead of max(0,z) , use  logloss(z)=log(1 + 𝑒𝑧)  
 

- Improvements: add and test new constraints to the minimization, such as slack 

variables ( +𝐶 ∑ 𝜉𝑗
𝑗  ) or alternative slack constraints (e.g., +𝐶 ∑ 𝜉𝑖2

𝑖  ) or L1 constraint 

(+𝜆 ∑ sign 𝑤𝑗𝑗  ), implement new kernel functions. You also could implement “gradient 

ascent with momentum” (see bottom of document). 
 
 
 
2) Multi-layer neural networks  

- Traditional implementation: Write function to classify based on neural network 
parameters. Run gradient ascent to minimize neuron output error, following ascent rule 
given in class. 

- Improvements: Incorporate “neural pruning” – after K learning iterations, remove 
neurons with low weights from each layer. Incorporate neural “competition” – the output 
of each neuron incorporates both its inputs and a constant suppression from the output of 

neighboring neurons. Replace sigmoid output rule with step function 𝑔(ℎ) = {
0   ℎ < 0
1   ℎ ≥ 0

, 

rectify-linear 𝑔(ℎ) = {
0   ℎ < 0
ℎ   ℎ ≥ 0

, or hyperbolic tangent 𝑔(ℎ) =
𝑒2ℎ−1

𝑒2ℎ+1
 and adjust the update 

rule. You also can implement “gradient ascent with momentum” (see bottom of document). 
 
 
3) Implement Bayesian network classification and learning: You will have to investigate the 
structure and implementation of Bayes nets yourself and implement it from scratch using 
Python 



 
 
4) Component analysis (Pick at least one from PCA, ICA, or NMF): 
 For method 3, you must: 

 feed the resulting reduced feature set to another classifier (e.g., 
logistic classifier) 

 show the average reconstruction error using 1 through 10 principle 
components 

 - “Traditional” implementation (simplified): 
 PCA: 
  Convert all features to have zero mean (𝜇 = 0) and unit variance (𝜎 = 1) 
  For component q=1:Q:  

Find uq to minimize:  
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 ICA: 
Convert all features to have zero mean (𝜇 = 0) and unit variance (𝜎 = 1) 

  Repeatedly loop:  
Find uq , 𝑧𝑞

𝑖  to minimize:  
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  Note: this is simpler than the traditional ICA objective function, but it is still a 
worthwhile exercise in dimensionality reduction through optimization. 
 NMF: 
  Convert all features to be non-negative 
  Repeatedly loop: 

Find uq , 𝑧𝑞
𝑖  to minimize: 
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   Set all negative u and z values to 0. 
 

- Improvements: Merge some of the rules from two methods together to create a 
new method; add L1 or L2 regularization; add mapping functions/kernels For ICA or NMF, 
you also can implement “gradient ascent with momentum” (see bottom of document). 
 
 
5) Bayes learning AND feature selection: 
 Bayes learning: Extend Laplacian learner/classifier from HW1 to fit models for at 
least three other probability distributions. Example distributions can be found here: 
https://en.wikipedia.org/wiki/List_of_probability_distributions#Continuous_distributions  



. I would suggest Gaussian, Uniform, and Rayleigh . You may be able to find closed-form 
ways to calculate your probability parameters, or you may need to use gradient ascent. 
 
 Feature selection/removal 
 - Traditional: Greedily add/remove best feature, then add/remove best remaining 
feature, etc. If a feature has been added/removed, assume it is the optimal strategy to keep 
it always/have it permanently removed. 
 - Improvements:   

1) Greedily select/remove features in pairs or in triples; once a pair or triple 
is added/removed, never retract this decision.  

2) Greedily select/remove one at a time, but after every k steps randomly 
remove a previously-added feature/add back a previously-removed feature. You can 
place higher probability on reversing features selected/removed that had smallest 
impact on accuracy. 

 
 
 
Extra note: 
Here is guidance if you wish to implement “gradient descent with momentum”. If the 

normal update rule for parameter 𝜃 at iteration t is  𝜃𝑡+1 ← 𝜃𝑡 + 𝜀1
𝑑𝐿𝑡

𝑑𝜃
 , the “momentum” 

learning rule is: 𝜃𝑡+1 ← 𝜃𝑡 + 𝜀1
𝑑𝐿𝑡

𝑑𝜃
+ 𝜀2

𝑑𝐿𝑡−1

𝑑𝜃
  , with 𝜀2 > 𝜀1 (e.g., 𝜀2 = 0.1, 𝜀1 = 0.01 . Each 

update is computed based on the derivative at the present iteration plus the derivative at 
the previous iteration. 


