
Final Project

Due May 9

For the final project, you will take a data set and use two classification approaches to
distinguish classes in your data. For one of the classifications, you will be required to
implement the classifier and introduce adjustments to the classifier in an attempt to
optimize its performance. This is a group project with 2-3 person.

For the project you must:

 Program functions to
o extend at least one classification and learning method (the second method

can be taken from publicly available software but MUST be credited as such)
 Experiment with

o two learning/classification methods
o optimization of one learning/classification method

 Report on your methods, results (accuracy and run-time), and conclusions in an 8-
15-page paper

Your grade will be calculated as follows:

 40% for code to implement a new classifier and optimizations of the classifier
 30% for your report's discussion of your implementation (how the code work) and

justification of any design/optimization choices you made
 30% for your report's presentation of results (accuracies and run-times) and

conclusions

The data set:
You may choose your own data set. However, you may be interested in using any of the
three data sets listed below.

Online News Popularity:

You can use the "Online News Popularity" data set provided by University of

California, Irvine. It uses 58 features to predict the number of times a web page is

shared — ignoring the first two features and using the last feature as class indicator.

Read over the documentation for the data set on the Irvine web site. All feature values

in our .mat file are the same as the feature values listed in the documentation.

Note there is no pre-determined "class" label; instead the final "feature" counts the

number of visits for each page. You will have to pick a threshold for high versus

low page shares — you are free to experiment with this threshold as well. To

start, I suggest trying 1400 as share threshold.

http://archive.ics.uci.edu/ml/datasets/Online+News+Popularity

SPECTF Heart Data Set:

You can use the "SPECTF Heart Data Set" data set provided by University of

California, Irvine. It uses 44 features to predict the presence of a heart condition —

using the first feature as class indicator. Read over the documentation for the data set

on the Irvine web site. All feature values in our .mat file are the same as the feature

values listed in the documentation.

You may download the data directly from the UC Irvine site, using the CSV files

SPECTF.train and SPECTF.test.

Adult data set:

You can use the "Adult" data set provided by University of California, Irvine. It uses

14 features to predict whether a person makes over $50K per year. Read over the

documentation for the data set on the Irvine web site. All feature values in our .mat

file are the same as the feature values listed in the documentation, except the class

labels have been converted to 0 and 1 in our .mat file, as described below.

The learners/classifiers:
You must implement and expand one of the following. For your second learner/classifier,
you may use a previously-implemented version of another of these methods; the second
method may be taken from a Matlab toolbox or Python package, or downloaded from the
internet):

 Support vector machine
 Neural Network
 Bayes Network
 PCA, ICA, or NMF in combination with a previously implemented learner/classifiers
 Feature selection/removal in combination with Bayes classifier

Key details on implementation for the traditional and expanded version of each
method are provided at the bottom of this document.

Experiments with settings/hyper-parameters for each method:
As we have discussed in class, each classification/learning method potentially has a variety
of settings and hyper-parameters to manipulate. Possible settings and hyper-parameters
include:

 Initialization values for parameters
 Regularization strength
 Update step size
 Maximum number of permitted repeated iterations on training data
 Slack variable strength
 Number of neuron units

http://archive.ics.uci.edu/ml/datasets/SPECTF+Heart
http://archive.ics.uci.edu/ml/datasets/SPECTF+Heart
http://archive.ics.uci.edu/ml/datasets/Adult

 Size of training data set (you will have to divide the data into testing and training
sets; note, testing data set should stay the same for all learning conditions to ensure
consistent evaluation)

For each of the two classifier/learner methods, you are to experiment with at
least two settings or hyper-parameters and report their effects on accuracy on
test data and run-time for learning.

For each classifier/learner method, you should try at least five different values per
setting/hyper-parameter. For example, using gradient ascent to learn the SVM separator,
you may vary ε step size and tolerance of error (“slack”) C. You can evaluate learning
accuracy based on values:

ε 0.001 0.01 0.1 1 10 0.01 0.01 0.01 0.01

C 1 1 1 1 1 0.1 0.001 10 100

This would constitute 5 different values for each of two hyper-parameters.

The optimized/”improved” version for one of the methods:

In this step, you need to choose one of the models you selected to make it a sophisticated
version. The expanded version of each method is provided at the bottom of this document.

You can choose the methods from the bottom list and you are also encouraged to make new
optimization methods yourselves.

In your report, you need to:

 Illustrate how you experiment your optimization method on the original model.
 Explain how the optimized model improves the performance of the original model,

e.g, the accuracy of the model, the speed of modeling
 Illustrate the advantage/disadvantage of your optimized model compared to your

original model.

Graded materials:
You must submit: (1) Your complete Python code, (2) Your 8–15 page report

Your code must include:

 Commands you used to load/clean your data set, train your classifiers and test your
classifiers. You may have a simple function to perform all these steps, or you may
record these commands without a wrapping function

 All relevant Methods/functions to implement/expand/optimize upon a learning and
classification method.

 A readme text file that explains how to run the functions you have written.

Your report must include:

 Introduction: Summary of the data and the methods you tried, and a brief preview of
your final conclusions

 Methods: Which methods you tried, how you adjusted the standard method to try to
make it "better", what settings/hyper-parameters you used.

 Results: Discuss the effects of using different learning methods, the effects of the
changes you made to the traditional methods, and the effects of the learning
settings/hyper-parameters. You must include at least one table/graph. More
tables/graphs are welcome!

 Conclusion: Comment on the take-away messages you have gotten from your
experiments.

Time commitment: This project should take you at least 50 hours over a month span.

Due date: The project will be due May 9.

Continue to the next page to read the details about the traditional implementation
and improvements you are expected to make for your selected method

Learning/classification methods in detail:

You need to choose one of the five learning/classification models to implement and to
further improve.

1) SVM:

- Traditional “dual” kernel implementation: Write function to find 𝜶 for support
vectors. Run gradient ascent-or-descent to maximize:

argmax
𝛼,𝛾,𝜆

∑ 𝛼𝑗

𝑗

−
1

2
∑ 𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝐾(𝒙𝑖, 𝒙𝑗)

𝑖,𝑗

− 𝛾1 max (0, ∑ 𝛼𝑗𝑦𝑗

𝑗

) − ∑ 𝜆𝑗 max(0, 𝛼𝑗)

𝑗

Note this optimization is mathematically derived from the version in homework 2, with
some modifications, more commonly called the “dual” form of SVM optimization. The
max(0, ∑ 𝛼𝑗𝑦𝑗

𝑗) term pushes for ∑ 𝛼𝑗𝑦𝑗
𝑗 = 0 and the max(0, 𝛼𝑗) terms push for 𝛼𝑗 ≥ 0 .

Use at least the following two kernel definitions:

K(x, v) = xTv and K(x,v) = exp (−
1

2𝜎2
(𝒙 − 𝒗)2)

You also may choose to use the “logistic loss” function instead of the max function:
Instead of max(0,z) , use logloss(z)=log(1 + 𝑒𝑧)

- Improvements: add and test new constraints to the minimization, such as slack

variables (+𝐶 ∑ 𝜉𝑗
𝑗) or alternative slack constraints (e.g., +𝐶 ∑ 𝜉𝑖2

𝑖) or L1 constraint

(+𝜆 ∑ sign 𝑤𝑗𝑗), implement new kernel functions. You also could implement “gradient

ascent with momentum” (see bottom of document).

2) Multi-layer neural networks

- Traditional implementation: Write function to classify based on neural network
parameters. Run gradient ascent to minimize neuron output error, following ascent rule
given in class.

- Improvements: Incorporate “neural pruning” – after K learning iterations, remove
neurons with low weights from each layer. Incorporate neural “competition” – the output
of each neuron incorporates both its inputs and a constant suppression from the output of

neighboring neurons. Replace sigmoid output rule with step function 𝑔(ℎ) = {
0 ℎ < 0
1 ℎ ≥ 0

,

rectify-linear 𝑔(ℎ) = {
0 ℎ < 0
ℎ ℎ ≥ 0

, or hyperbolic tangent 𝑔(ℎ) =
𝑒2ℎ−1

𝑒2ℎ+1
 and adjust the update

rule. You also can implement “gradient ascent with momentum” (see bottom of document).

3) Implement Bayesian network classification and learning: You will have to investigate the
structure and implementation of Bayes nets yourself and implement it from scratch using
Python

4) Component analysis (Pick at least one from PCA, ICA, or NMF):
 For method 3, you must:

 feed the resulting reduced feature set to another classifier (e.g.,
logistic classifier)

 show the average reconstruction error using 1 through 10 principle
components

 - “Traditional” implementation (simplified):
 PCA:
 Convert all features to have zero mean (𝜇 = 0) and unit variance (𝜎 = 1)
 For component q=1:Q:

Find uq to minimize:

argmin
𝒖

∑ ∑(𝒙𝑗
𝑖 − (𝒖𝑞𝑇𝒙𝑖)𝒖𝑗

𝑞)
2

𝑗𝑖

Remove uq from xi: 𝒙𝑖 ← 𝒙𝑗
𝑖 − (𝒖𝑞𝑇𝒙𝑖)𝒖𝑗

𝑞

 ICA:
Convert all features to have zero mean (𝜇 = 0) and unit variance (𝜎 = 1)

 Repeatedly loop:
Find uq , 𝑧𝑞

𝑖 to minimize:

argmin
𝒖,𝒛,𝛾

∑ ∑ (𝒙𝑗
𝑖 − ∑ 𝑧𝑞

𝑖

𝑞

𝒖𝑗
𝑞)

2

+ 𝛾 ∑|𝑧𝑞
𝑖 |

𝑖,𝑞𝑗𝑖

 Note: this is simpler than the traditional ICA objective function, but it is still a
worthwhile exercise in dimensionality reduction through optimization.
 NMF:
 Convert all features to be non-negative
 Repeatedly loop:

Find uq , 𝑧𝑞
𝑖 to minimize:

argmin
𝒖,𝑧,𝛾

∑ (∑ (𝑥𝑖 − ∑ 𝑧𝑞
𝑖 𝒖𝑗

𝑞

𝑞

)

2

𝑗

)

𝑖

− 𝛾 ∑ 𝒖𝑗
𝑞

𝑗,𝑞

− 𝛾 ∑ 𝑧𝑞
𝑖

𝑖,𝑞

 Set all negative u and z values to 0.

- Improvements: Merge some of the rules from two methods together to create a
new method; add L1 or L2 regularization; add mapping functions/kernels For ICA or NMF,
you also can implement “gradient ascent with momentum” (see bottom of document).

5) Bayes learning AND feature selection:
 Bayes learning: Extend Laplacian learner/classifier from HW1 to fit models for at
least three other probability distributions. Example distributions can be found here:
https://en.wikipedia.org/wiki/List_of_probability_distributions#Continuous_distributions

. I would suggest Gaussian, Uniform, and Rayleigh . You may be able to find closed-form
ways to calculate your probability parameters, or you may need to use gradient ascent.

 Feature selection/removal
 - Traditional: Greedily add/remove best feature, then add/remove best remaining
feature, etc. If a feature has been added/removed, assume it is the optimal strategy to keep
it always/have it permanently removed.
 - Improvements:

1) Greedily select/remove features in pairs or in triples; once a pair or triple
is added/removed, never retract this decision.

2) Greedily select/remove one at a time, but after every k steps randomly
remove a previously-added feature/add back a previously-removed feature. You can
place higher probability on reversing features selected/removed that had smallest
impact on accuracy.

Extra note:
Here is guidance if you wish to implement “gradient descent with momentum”. If the

normal update rule for parameter 𝜃 at iteration t is 𝜃𝑡+1 ← 𝜃𝑡 + 𝜀1
𝑑𝐿𝑡

𝑑𝜃
 , the “momentum”

learning rule is: 𝜃𝑡+1 ← 𝜃𝑡 + 𝜀1
𝑑𝐿𝑡

𝑑𝜃
+ 𝜀2

𝑑𝐿𝑡−1

𝑑𝜃
 , with 𝜀2 > 𝜀1 (e.g., 𝜀2 = 0.1, 𝜀1 = 0.01 . Each

update is computed based on the derivative at the present iteration plus the derivative at
the previous iteration.

