Dimensionality reduction

CISC 5800 Professor Daniel Leeds

Opening note on dimensional differences

Each dimension corresponds to a feature/measurement

Magnitude differences for each measurement (e.g., animals):

- x₁ speed (mph) 0-100
- x₂ weight (pounds) 10-1000
- x₃ size (feet) 2-20

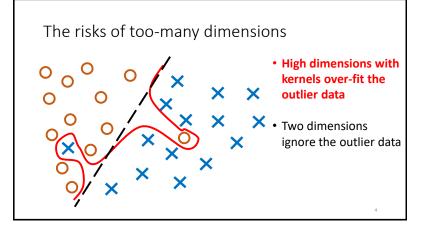
Problem for learning:

$$w_j \leftarrow w_j + \varepsilon x_j^i (y^i - g(w^T x^i)) - \frac{w_j}{\lambda}$$

Normalize:
$$r_1 = \frac{x_1 - \mu_1}{\sigma_1}$$
 or $r_1 = \frac{x_1 - min_1}{max_1 - min_1}$

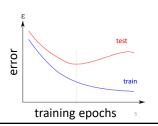
The benefits of extra dimensions

• Finds existing complex separations between classes



Training vs. testing

- Training: learn parameters from set of data in each class
- Testing: measure how often classifier correctly identifies new data
- ullet More training reduces classifier error arepsilon
 - More gradient ascent steps
 - · More learned feature
- Too much training causes worse testing error – overfitting



Goal: High Performance, Few Parameters

- "Information criterion": performance/parameter trade-off
- Variables to consider:
 - L likelihood of train data after learning
 - k number of parameters (e.g., number of features)
 - m number of points of training data
- Popular information criteria:
 - Akaike information criterion $\underline{\textbf{AIC}}$: ln(L) k
 - Bayesian information criterion BIC: ln(L) 0.5 k ln(m)

Decreasing parameters

- Force parameter values to 0
 - L1 regularization
 - Support Vector selection
 - Feature selection/removal
- Consolidate feature space
 - Component analysis

0

Feature removal

- Start with feature set: F={x₁, ..., x_k}
- Find classifier performance with set F: perform(F)
- Loop
 - Find classifier performance for removing feature $x_1, x_2, ..., x_k$: $argmax_i$ $perform(F-x_i)$
 - Remove feature that causes least decrease in performance:

AIC: ln(L) - k

BIC: ln(L) - 0.5 k ln(m)

Repeat, using AIC or BIC as termination criterion

AIC testing: In(L)-k

Features	k (num features)	L (likelihood)	AIC
F	40	0.1	-42.3
F-{x ₃ }	39	0.04	-42.2
F-{x ₃ ,x ₂₄ }	38	0.02	-41.9
F-{x ₃ ,x ₂₄ ,x ₃₂ }	37	0.01	-41.6
F-{x ₃ ,x ₂₄ ,x ₃₂ ,x ₁₅ }	36	0.003	-41.8

)

Feature selection

AIC: ln(L) - k

BIC: ln(L) - 0.5 k ln(m)

- Find classifier performance for just set of 1 feature: argmax_i perform({x_i})
- Add feature with highest performance: F={x_i}
- Loop
 - Find classifier performance for adding one new feature: $\label{eq:adding} \mathsf{argmax}_i \ \mathsf{perform}(F + \{x_i\})$
 - Add to F feature with highest performance increase: $F=F+\{x_i\}$

Repeat, using AIC or BIC as termination criterion

1

Capturing links between features

 $\begin{array}{c} \text{With large number of features,} \\ \text{Document1} \ \ \text{Document2} \ \ \text{Document3} \ \ \text{some features} \ x_j \ \text{and} \ x_k \ \text{act similarly} \end{array}$

	Document	Document	. Documen
Wolf	12	4	1
Lion	16	3	2
Monkey	5	11	4
Sky	7	3	14
Tree	2	8	5
Cloud	6	2	12
:	:	:	:

 $x_{wolf} \& x_{lion} \rightarrow u_{predator}$ $x_{sky} \& x_{cloud} \rightarrow u_{atmosphere}$

Approximate
$$oldsymbol{x}^1 = egin{bmatrix} x_1^1 & \vdots & \vdots & \vdots & \vdots \\ x_N^1 & \vdots & \ddots & \vdots & \vdots \\ & & & & & \end{bmatrix}$$
 with $oldsymbol{u}^1 = egin{bmatrix} u & u & u & u & u \\ & & & & & & & \end{bmatrix}$

Automatically learn summary features

Find representative component features as pixel patterns

Image as grid of n x m pixels

Image features

13

Cartoon face example:

 $\approx 1\times u^1 + 0\times u^2 + 1\times u^3 + 1\times u^4 + 0\times u^5$

u¹

 u^4

 \approx

actual image

Component analysis

Each data point \mathbf{x}^i in D can be reconstructed as sum of components \mathbf{u} :

$$\bullet \boldsymbol{x^i} = \sum_{q=1}^T z_q^i \boldsymbol{u}^q$$

 ${}^ullet z_q^i$ is weight on ${\mathbf q}^{ ext{th}}$ component to reconstruct data point ${\mathbf x}^{ ext{i}}$

15

Evaluating components

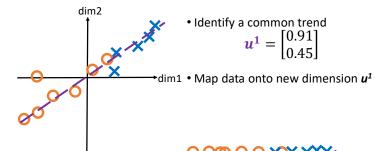
Components learned in order of descriptive power

Compute reconstruction error for all data by using first r components:

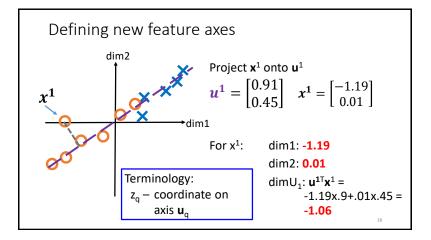
$$error = \sum_{i} \left(\sum_{j} \left(\mathbf{x}_{j}^{i} - \sum_{q=1}^{r} z_{q}^{i} \mathbf{u}_{j}^{q} \right)^{2} \right)$$

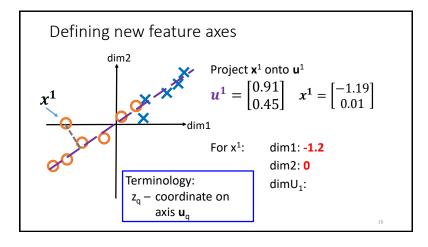
c

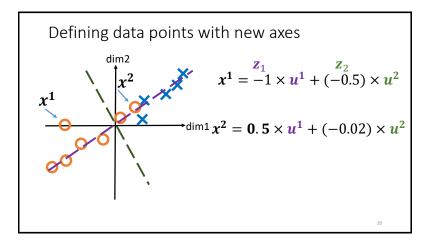
Defining new feature axes



• •







Component analysis

Each data point x^i in D can be reconstructed as sum of components u:

$$\bullet x^i = \sum_{q=1}^T z_q^i u^q$$

 $ullet z_q^i$ is weight on $\mathbf{q}^{ ext{th}}$ component to reconstruct data point \mathbf{x}^i

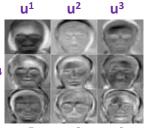
1

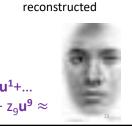
Component analysis: examples

$$\mathbf{x}^i = \sum_{i=1}^{T} z_q^i \mathbf{u}^q$$

"Eigenfaces" – learned from set of face images

u: nine components





x⁴: data

Types of component analysis

Capture links between features as "components"

- Principal component analysis (PCA)
- Independent component analysis (ICA)
- Non-negative matrix factorization (NMF)

25

Principal component analysis (PCA)

Describe every \mathbf{x}^i with small set of components $\mathbf{u}^{1:Q}$

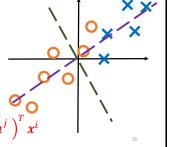
Use same $\mathbf{u^1}$, ... $\mathbf{u^T}$ for all $\mathbf{x^i}$

All components orthogonal:

$$(\mathbf{u}^i)^T \mathbf{u}^j = 0 \quad \forall i \neq j$$

$$x^i = \sum_{q=1}^Q z_q^i u^q$$

NOTE: In PCA $z_i^i = 0$



Independent component analysis (ICA)

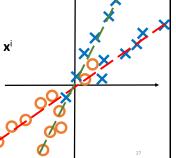
Describe every \textbf{x}^i with small set of components $\textbf{u}^{1:Q}$

Can use different u¹, ... u^Q for each xⁱ

No orthogonality constraint:

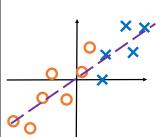
$$(\mathbf{u}^i)^T \mathbf{u}^j \neq 0 \quad \forall i \neq j$$

$$x^i = \sum_{q=1}^Q z_q^i u^q$$



6

Idea of learning in PCA



- 1. $D = \{x^1, ..., x^n\}$, data 0-center
- 2. Component index: q=1
- 3. Loop
- Find direction of highest variance: uq
 - Ensure $|\boldsymbol{u}^q| = 1$

• Remove
$$\mathbf{u_q}$$
 from data:
$$D = \left\{ \mathbf{x^1} - z_q^1 \mathbf{u^q}, \cdots, \mathbf{x^n} - z_q^n \mathbf{u^q} \right\}$$

$$(\boldsymbol{u_i})^T \boldsymbol{u_j} = 0 \quad \forall i \neq j$$

Thus, we guarantee $z_j^i = \boldsymbol{u}_j^T \boldsymbol{x}^i$

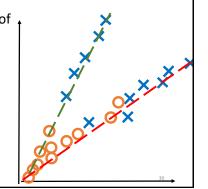
Non-negative matrix factorization (NMF)

Describe every \mathbf{x}^i with small set of components **u**^{1:T}

All components and weights non-negative

$$u^i \geq 0, z_q^i \geq 0 \quad \forall i, q$$

$$\mathbf{x}^i = \sum_{q=1}^Q z_q^i \mathbf{u}^q$$



Types of component analysis

Principal component analysis (PCA):

- Minimal components to describe all data
- All components orthogonal: $(\boldsymbol{u_i})^T \boldsymbol{u_i} = 0 \quad \forall i \neq j$

Independent component analysis (ICA):

- Minimize components to describe each data point x^i
- Can focus on different components for different x^i

Non-negative matrix factorization (NMF):

- All data xi non-negative
- All components and weights non-negative $u_i \geq 0$, $z_q^i \geq 0 \quad \forall i, q$

 $x^i = \sum_{q}^{\infty} z_q^i u_q$