
4/18/2019

1

Learning Theory

CISC 5800

Professor Daniel Leeds

The classifier
Function C that provides

correct label (Y) based on features (X)

C(x)=y
lion: 16
wolf: 12

monkey: 14
broker: 0
analyst: 1

dividend: 1

jungle
C

lion: 0
wolf: 2

monkey: 1
broker: 14
analyst: 10

dividend: 12

wallStreet
C

2

Goal: identifier classifier that maximizes
correct labels for most inputs

Sample complexity

How many training examples needed to learn concept?

• X – set of data points

• P(X) – Probability of drawing data point x

• H – space of hypotheses H = {h : X -> classes }

• C – correct assignment C = {c : c(x) = y ∀xϵX }

3

Probability of error

H = {h : X -> {0,1}}

True error of h: probability randomly selected
data point from P(X) misclassified

errortrue(h) = Prx~P(X) [h(x) ≠ c(x)]

• Hard to compute, but can prove properties of errortrue

4

h c

X – data points

4/18/2019

2

Example: Learner picks one of fixed number
of classifiers ℎ𝜖𝐻

Correct classifier c is some assignment of each x to a label

How many training points m needed for errortrue(h)<휀 ?

Prob[errortrue(h)≤ 휀] > 1-𝛿

“Probability learned classifier h has worse than 휀 error is < 𝛿”

5

“Probably Approximately Correct
Learning” – PAC Learning

Binary example: sample complexity

Note for 휀 = [0,1] , 1 − 휀 ≤ 𝑒−

What is the chance learned h is bad but classifies training data
correctly?

If errortrue(h)>휀:

• Prob [h correctly labels x1] < 1 − 휀 ≤ 𝑒−

• Prob [h correctly labels x1 and x2 … and xm] < 1 − 휀 𝑚 ≤ 𝑒−𝑚

If classifier picks one h* randomly from H

• Prob[h* is bad] = Prob[h1 bad] + … Prob[hn bad]
= Prob[errortrue(h*)>휀] < H 𝑒−𝑚

6Valiant, 1984

Binary example: sample complexity

Number of data points to reduce chance
of false classification, enforce

Prob[errortrue(h)≤ 휀] > 1-𝛿

1- Prob[errortrue(h)≤ 휀]= Prob[errortrue(h)> 휀]< 𝛿

Prob[errortrue(h*)>휀] < H 𝑒−𝑚 ; stricter bound H 𝑒−𝑚 < 𝛿

8Valiant, 1984

Binary example: sample complexity

Number of data points to reduce chance
of false classification, enforce

Prob[errortrue(h)≤ 휀] > 1-𝛿

Prob[errortrue(h*)>휀] < H 𝑒−𝑚 < 𝛿

𝑚 >
1

휀
ln

𝐻

𝛿
9Valiant, 1984

4/18/2019

3

VC Dimensions

If H not finite, PAC result seems to require ∞ data points

• Overly conservative

“Dichotomy” – division of set of points S into two subsets

• “Shattering” – set of points is shattered by H iff there exists
hϵH associated with every possible dichotomy

Vapnik-Chervonenkis dimension VC(H) is size of largest finite
subset of S that can be shattered by H

10

Shattering example3

•H={rectangles: inside is 1, outside is 0} VC(3)

• S={3 specified dots}

12

Shattering example

•H={rectangles, inside is 1 outside is 0} VC(3)

• S={4 specified dots}

14

Shattering example

•H2={rectangles, inside is 1 outside is 0
inside is 0 outside is 1}

VC(4)

• S={4 specified dots}

15

4/18/2019

4

Shattering example

•H={rectangles, inside is 1 outside is 0} VC(4)

• S={4 specified dots}

18

Shattering example 4

•H={rectangle, inside is 1 outside is 0}

• S={8 specified dots}

21

Shattering example 4

•H={rectangle, inside is 1 outside is 0} H(4)

• S={8 specified dots}

22

Shattering infinite points

•H={Linear separators}

• S={Any point in 2D feature
space}

• S={Any point in nD space}

23

4/18/2019

5

PAC result with infinite H

VC(H) is size of largest finite subset of X that can be shattered
by H

• d=VC(H)

•𝑚 ≥ 𝑂
1
𝑑 log

1
+ log

1

𝛿
~
1
𝑑 log

1
+ log

1

𝛿

Recall: 𝑚 >
1
ln

𝐻

𝛿
for finite size H

24

Intuition for PAC result with infinite H

• d=VC(H)

•𝑚 ≥ 𝑂
1
𝑑 log

1
+ log

1

𝛿
~
1
𝑑 log

1
+ log

1

𝛿

• Finite H: 𝑚 >
1
ln

𝐻

𝛿

𝑑 log
𝑘
→ log

𝑘𝑑

Can pick h to shatter at most d points in one of two classes

2d meaningfully different classifiers h: |H|~2d

25

