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Sequences: Finding patterns

What number comes next?

1, 2, 3, 4, 5,

6

2, 6, 10, 14, 18, 22

1, 2, 4, 8, 16, 32

1, 3, 6, 10, 15, 21

1, 2, 6, 24, 120, 720

1, 1, 2, 3, 5, 8, 13, 21
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Sequences: Finding patterns

What number comes next?
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2, 6, 10, 14, 18,

22

1, 2, 4, 8, 16, 32
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1, 1, 2, 3, 5, 8, 13, 21
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Discovering the pattern

Each term might be related to previous terms

Each term might depend on its position number (1st, 2nd,
3rd, . . . )

“Well-known” sequences (even numbers, odd numbers)

Some (or all) of the above
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2, 4, 6, 8, 10, . . .

Can we relate a term to previous terms?

Second term is 2 more than first term.

Third term is 2 more than second term.
...

Any given term is 2 more than previous term.
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2, 4, 6, 8, 10, . . .

Can we describe each term by its position in the sequence?

Term at position 1 is 2.

Term at position 2 is 4.

Term at position 3 is 6.
...

Term at position n is 2n .
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Mathematical notation

Write term in a sequence as a lower case letter, followed
by a subscript denoting position number of the term (e.g.,
a1, b7, zk ).
For the sequence 2, 4, 6, 8, 10, . . . :

a1 =

2.
a2 = 4.
an is nth term in the sequence.

What is a3? 6

What is a5? 10

What is a6? 12

What is an if n = 5? 10

What is an+1 if n = 5? 12
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Recursive formula

Recursive formula for a sequence: each term is described
in relation to previous term(s). For example:

an = 2an−1

So
a3 = 2a2 = 2 · (2a1) = 4a1 = 4 · (2a0) = 8a0

= 8 · (2a−1) = 16a−1 = . . .

Problem: Need a starting point (initial condition) such as

a1 = 1

So let’s try
an = 2an−1 for n ≥ 2

a1 = 1

Example:

a3 = 2a2 = 2 · (2a1) = 4a1 = 4 ·1 = 4
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Fibonacci sequence

1,1,2,3,5,8,13, . . .

Recursive formula:

an = an−1 +an−2 for n ≥ 3

a2 = 1

a1 = 1

What’s a10? Top-down solution:

a10 = a9 +a8 = (a8 +a7)+ (a7 +a6) = a8 +2a7 +a6 . . .

Too hard!

Better way? Work bottom-up via a grid.
n 1 2 3 4 5 6 7 8 9 10
an 1 1 2 3 5 8 13 21 34 55
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Recursion

Recursive formula corresponds to “recursive function” in a
programming language.

Fibonacci formula

an = an−1 +an−2 for n ≥ 3

a2 = 1

a1 = 1

Recursive function

def fib(n):

if n==1 or n==2:

return 1

else:

return fib(n-1) + fib(n-2)
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Exercise: Find recursive formula

2, 4, 6, 8, 10, . . .

an = an−1 +2 for n ≥ 2

a1 = 2

1, 3, 6, 10, 15, . . .

an = an−1 +n for n ≥ 2

a1 = 1

2, 2, 4, 6, 10, 16, . . .

an = an−1 +an−2 for n ≥ 3

a2 = 2

a1 = 2
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Finding a closed formula

Write each term in relation to its position
Example: 2, 4, 6, 8, 10, . . .

a1 = 2 =

2 ·1
a2 = 4 = 2 ·2
a3 = 6 = 2 ·3
More generally, an = 2n .

Arthur G. Werschulz CISC 1100/1400/Summer, 2017/Chapter 2 12 / 32



Finding a closed formula

Write each term in relation to its position
Example: 2, 4, 6, 8, 10, . . .

a1 = 2 = 2 ·1
a2 = 4 =

2 ·2
a3 = 6 = 2 ·3
More generally, an = 2n .

Arthur G. Werschulz CISC 1100/1400/Summer, 2017/Chapter 2 12 / 32



Finding a closed formula

Write each term in relation to its position
Example: 2, 4, 6, 8, 10, . . .

a1 = 2 = 2 ·1
a2 = 4 = 2 ·2
a3 = 6 =

2 ·3
More generally, an = 2n .

Arthur G. Werschulz CISC 1100/1400/Summer, 2017/Chapter 2 12 / 32



Finding a closed formula

Write each term in relation to its position
Example: 2, 4, 6, 8, 10, . . .

a1 = 2 = 2 ·1
a2 = 4 = 2 ·2
a3 = 6 = 2 ·3
More generally, an =

2n .

Arthur G. Werschulz CISC 1100/1400/Summer, 2017/Chapter 2 12 / 32



Finding a closed formula

Write each term in relation to its position
Example: 2, 4, 6, 8, 10, . . .

a1 = 2 = 2 ·1
a2 = 4 = 2 ·2
a3 = 6 = 2 ·3
More generally, an = 2n .

Arthur G. Werschulz CISC 1100/1400/Summer, 2017/Chapter 2 12 / 32



Find the closed formulas

1, 3, 5, 7, 9, . . .

an = 2n −1

3, 6, 9, 12, 15, . . .bn = 3n

8, 13, 18, 23, 28, . . .cn = 5n +3

3, 9, 27, 81, 243, . . .dn = 3n
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Recursive formulas vs. closed formulas

Recursive formula
It’s often easier to find a recursive formula for a given
sequence.
It’s often harder to evaluate a given term.

Closed formula
It’s often harder to find a closed formula for a given
sequence.
It’s often easier to evaluate a given term.
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Closed formula⇒ recursive formula

Write out a few terms.

See if you can figure out how a given term relates to
previous terms.

Example: rn = 3n +4.

n 1 2 3 4 5 . . .
rn 7 10 13 16 19 . . .

We find
rn = rn−1 +3 for n ≥ 2

r1 = 7
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Closed formula⇒ recursive formula

Can also use algebraic manipulation. Let’s try

rn = 3n +4

again.
Initial condition is easiest—substitute n = 1 into closed
form:

r1 = 3 ·1+4 = 7

Recursive formula: Try to describe rn in terms of rn−1:

rn = 3n +4

rn−1 = 3(n −1)+4 = 3n −3+4 = 3n +1

So
rn − rn−1 = (3n +4)− (3n +1) = 3,

i.e.,
rn = rn−1 +3
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Another example

sn = 2n −2

Initial condition:

s1 = 21 −2 = 0.

Recursive formula: We have

sn = 2n −2

and
sn−1 = 2n−1 −2

So
sn = 2n −2 = 2 ·2n−1 −2 = 2 ·2n−1 −4+2

= 2 · (2n−1 −2)+2

= 2sn−1 +2
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Exercise

Find the recursive formulas for the following sequences:

an = 2n +7

a1 = 9
an = an−1 +2 for n ≥ 2.

bn = 2n −1
b1 = 1
bn = 2bn−1 +1 for n ≥ 2.
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Summations

Summing the terms in a sequence: important enough to have
its own notation (“sigma notation”):

n¼
i=1

ai =

a1 +a2 + · · ·+an

Parts of speech?

Large Î: “summation”

i = 1 at bottom: We want to start summation at term #1 of
the sequence.

n at the top: We want to stop summation at the nth term
of the sequence

Portion to the right of the În
i=1: Closed form of sequence

we want to sum.
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Examples of Î-notation:

5¼
i=1

(3i +7)

= (3 ·1+7)+ (3 ·2+7)+ (3 ·3+7)+ (3 ·4+7)

+ (3 ·5+7)

= 10+13+16+19+22 = 80
6¼

j=2

(j2 −2) = (22 −2)+ (32 −2)+ (42 −2)+ (52 −2)+ (62 −2)

= 2+7+14+23+34 = 80

Note: Parentheses are important!

5¼
i=1

3i +7 = (3 ·1+3 ·2+3 ·3+3 ·4+3 ·5)+7 = 52
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Converting a sum into Î-notation

3+7+11+15+19

=
5¼

i=1

(4i −1)

=
5¼

j=1

(4j −1)

0+3+8+15+24 =
5¼

k=1

(k2 −1)
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Mathematical induction

Suppose you have a statement P(n) about the positive
integer n . How would you prove that P(n) is true for all n ∈�+?

Prove P(1)

Prove P(2)

Prove P(3)

Prove P(4)
...

Prove P(100000000)

But this doesn’t guarantee that P(n) is true for all n ; maybe
P(100000001) is false!!
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Example: Sum of the first n positive integers

Want to show that

n¼
j=1

j = 1
2n(n +1) ∀n ∈�+,

or, if you prefer,

1+2+ · · ·+n = 1
2n(n +1) ∀n ∈�+.

�

“How on earth did you come up with this formula in the first
place?” Later . . .

n 1 2 3 4 5 6 7 8 9 10´n
j=1 j 1 3 6 10 15 21 28 36 45 55

1
2n(n +1) 1 3 6 10 15 21 28 36 45 55
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Dominoes!!

Suppose:

You’re going to push the first one over.

If any given domino has fallen down, the next one after it
will also fall down.

They’ll all fall down!
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Theorem (First Principle of Mathematical Induction)

Let P(n) be a statement about the positive integer n ∈�+.
Suppose we can prove the following:

Basis step: P(1) is true.

Induction step: If P(k) is true for some arbitrary k ∈�+,
then P(k +1) is true.

Then P(n) is true for all n ∈�+.

Why?

P(1) is true (basis step).

P(1) being true implies P(1+1) = P(2) is true (induction step).
P(2) being true implies P(2+1) = P(3) is true (induction step).
P(3) being true implies P(3+1) = P(4) is true (induction step).
P(4) being true implies P(4+1) = P(5) is true (induction step).
... and so on
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Example: Sum of the first n positive integers (cont’d)

Theorem
n¼

j=1

j = 1
2n(n +1) ∀n ∈�+

Proof (by induction): For n ∈�+, the statement P(n) we’re
trying to prove is

n¼
j=1

j = 1
2n(n +1). (1)

Basis step: Let n = 1. Then

n¼
j=1

j =
1¼

j=1

j = 1 and 1
2n(n +1) = 1

2 ·1 · (1+1) = 1.

So formula (1) is true when n = 1, i.e., P(1) is true.
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Induction step: Let k ∈�+, and suppose that P(k) is true; we
need to show that P(k +1) is true.

Since P(k) is true, we know that

k¼
j=1

j = 1
2k(k +1)

Using this as a starting point, we want to show that P(k +1) is
true, i.e., that

k+1¼
j=1

j = 1
2(k +1)

(
(k +1)+1

)
= 1

2(k +1)(k +2).
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Induction step (cont’d): But

k+1¼
j=1

j =

( k¼
j=1

j

)
+(k +1)

= 1
2k(k +1)+ (k +1) by the induction hypothesis

=
(

1
2k +1

)
(k +1)

= 1
2(k +2)(k +1),

as required to prove that P(k +1) is true.

Since we have proved the basis step and the induction step, it
follows that P(n) is true for all n ∈�+.

Arthur G. Werschulz CISC 1100/1400/Summer, 2017/Chapter 2 28 / 32



Induction step (cont’d): But

k+1¼
j=1

j =

( k¼
j=1

j

)
+(k +1)

= 1
2k(k +1)+ (k +1) by the induction hypothesis

=
(

1
2k +1

)
(k +1)

= 1
2(k +2)(k +1),

as required to prove that P(k +1) is true.

Since we have proved the basis step and the induction step, it
follows that P(n) is true for all n ∈�+.

Arthur G. Werschulz CISC 1100/1400/Summer, 2017/Chapter 2 28 / 32



Example: Number of leaves in complete binary tree

Here’s a complete binary tree with five levels:

•

•

•

•

••

•

••

•

•

••

•

••

•

•

•

••

•

••

•

•

••

•

••
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Terminology:
Tree? All edges go from a given level to the next level.

Binary? No more than two descendants per node.
Complete? Each node has exactly two descendants.

Question: How many nodes branch out from the nth level
of a complete binary tree?

Get an idea by making a table. Let bn denote the number
of nodes branching out from the nth level. Looking at the
drawing we saw earlier:

n 1 2 3 4 5
bn 2 4 8 16 32

This suggests that bn = 2n .
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Theorem

For n ∈�+, let bn be the number of nodes branching out from
the nth level of a complete binary tree. Then bn = 2n

Proof (by induction): For n ∈�+, the stantement P(n) we’re
trying to prove is

bn = 2n . (2)

Basis step: Let n = 1. Looking at the first level of the binary
tree, it is immediately clear that b1 = 2. So P(1) is true.
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Basis step: Let n = 1. Looking at the first level of the binary
tree, it is immediately clear that b1 = 2. So P(1) is true.
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Induction step: Let k ∈�+, and suppose that P(k) is true; we
need to show that P(k +1) is true.

Since P(k) is true, we know that bk = 2k .

Since we’re working with a complete binary tree, each
node at any level branches out to two nodes at the next
level.
Each node at level k branches out to two nodes at level
k +1.
So bk+1 = 2bk .

Hence

bk+1 = 2bk
= 2 ·2k (by the induction hypothesis)

= 2k+1,

as required to prove that P(k +1) is true.

Since we have proved the basis step and the induction step, it
follows that P(n) is true for all n ∈�+.
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