

In-class Worksheet #7
Fall 2022! Nov 4, 2022
Computer Science I & Lab

0. Midterm review on expressions

 int x=10;

 cout << (3<x<5)<<endl;
 cout << (3<x<0) <<endl;

< and < are of the same precedence (same operator), the Associativity
is used to decide which operator is applied first.

For <, it’s left-to-right.

(see C++ Operator Precedence:
https://en.cppreference.com/w/cpp/language/operator_precedence)

Practice:

• Why we don’t need to use () below?

(month<1 || month>12 || day > 31 || day <1 || year <0)

• What’s evaluated first, next, and so on?

 (year > year2 || year==year2 && month < month2 ||
 year==year2 && month==month2 && day<day2)

• What will be the value of b after the following statements?

1. Code tracing (a way to make sense of the code).

int a=0;
int b=20;

if (a==10)
if (b==10)
cout << “*******”;
else
cout <<”+++++++”;

First step: fix the indentation in order to understand the if/else and if statement, i.e., what
does each of the cout statements belong to?

2. Calling a pre-defined function

Syntax:

 #include <appropriate_header_file>

 function_name (argument list)

• Can be used as a statement.
• If the function “returns” a value, then the above function call can be used in an

expression, or cout, if and while’s condition so on and on.

e.g.,
#include <cmath> // a header file that describes multiple math functions,
 // e.g., it includes a line such as
 // double floor(double x);
 //you can type “main floor” to get a description
cout << “floor of 100.93 is “<< floor (100.93) <<endl;

3. Study the code to understand the whole program’s structure, function declaration, function definition
and function call.

#include <iostream>
using namespace std;

//Returns the area of a circle with the given radius
//The formal parameter named price is the radius of the circle.
// The returned value is the area of the circle
double circle_area (double radius);

/* 1. What does the above statement mean?

 */

//2. What happens if we just have, i.e., there is no ()…
// double circle_area;

//2. How do you tell compiler that we will have a function that calculate the
circumference of a circle? It’s taking a double type value as input, and
output a double type value as a return value.

/* Note: Similar to variable name, function names must follow the follow

rules:Names can contain letters, digits and underscores

• Names must begin with a letter or an underscore (_)
• Names are case sensitive (myVar and myvar are different variables)
• Names cannot contain whitespaces or special characters like !, #, %, etc.
• Reserved words (like C++ keywords, such as int) cannot be used as names *

int main() // Why main is a very special function?
// what’s the body of main?
{
 int diameter_small, diameter_large;
 double price_small, unitprice_small,
 price_large, unitprice_large;

 cout << "Enter diameter of a small pizza (in inches): ";
 cin >> diameter_small;
 cout << "Enter the price of a small pizza: $";
 cin >> price_small;
 cout << "Enter diameter of a large pizza (in inches): ";
 cin >> diameter_large;
 cout << "Enter the price of a large pizza: $";
 cin >> price_large;

//the price we pay for each unit area for small pizza is calculated
// by dividing the small pizza’s price by its area

unitprice_small = price_small/circle_area(diameter_small/2.0);
//How to make sense of this line?

 unitprice_large = price_large/circle_area(diameter_large/2.0);

 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);
 cout << "Small pizza:\n"
 << "Diameter = " << diameter_small << " inches\n"
 << "Price = $" << price_small
 << " Per square inch = $" << unitprice_small << endl
 << "Large pizza:\n"
 << "Diameter = " << diameter_large << " inches\n"
 << "Price = $" << price_large
 << " Per square inch = $" << unitprice_large << endl;

 if (unitprice_large < unitprice_small)
 cout << "The large one is the better buy.\n";
 else
 cout << "The small one is the better buy.\n";

 cout << "Buon Appetito!\n";

 return 0;
}

/* The following part of code define the function:
 Todo: label the function header, function body */

double circle_area(double radius)
{
 const double PI = 3.14159;
 double area;

 area = PI * radius * radius;
 return (area);
}

4. Details of function call

• What’s a function call?

• Arguments are evaluated, and plugged in for the “formal parameter”, i.e., the formal

parameter (which is a variable itself) is assigned a value

• Body of the function is executed

• Until it reaches a “return” statement or reaches the end of the function body

The function call is replaced by the value the function returns.

• The main resumes execution…

5. Inside a function’s body

It’s a like a small program itself. The input are the parameters, output are the value
returned.

You can have any statements in the function body, as needed to implement the
“functionalities”.

Blackbox analogy:

6. Practice:

• Can we declare a function that for calculating 2^n for a given positive integer n?

• Can you provide the definition of the function? (i.e., implement it) ?

7. A function is like a small “program”.

 Program Function

Well-defined functionalities

Take some input

Generate some output

Implementation: how we
deliver the functionalities

