
Introduction
CISC1600

Dr.Xiaolan Zhang, Fordham Univ

1

In this class…

2

} A tour of computer system
} The first C++ program and the different stages of

programming
} An introduction to the programming environment

we use
} A dissection of a C++ program

2

What is a Computer System ?

3

} Computer System is a system capable of
} Performing computations, storing data
} Making logical decisions:

} If income is greater than 25K, use higher tax rate; otherwise, use
lower tax rate.

} Works billions of times faster than human beings; not smarter:
good at repetitive (tedious) tasks

} Interacts with devices

} Runs programs to handle different tasks:
} Balance checkbooks
} Process words, display documents
} Play games, movies, music

What is Computer System ?

4

• Components of a computer system:
• Hardware: electronic and mechanical parts.
▫ Input devices:
▫ Output devices
▫ System Unit:

• Software: a collection of programs
• A program tells computer the sequence of steps needed to fulfill a

task

What is Programming?

5

} Programming— act of designing and implementing
programs

} Most users are not programmers
} Programmers write instructions that comprise software in

various programming languages
} Programming is an essential skill for a computer scientist
} Not the only skill required to be a successful computer

scientist
} Once certain skills are developed, even simple

programs can be thrilling

Computer Hardware

6

• Hardware: electronic and mechanical parts.
▫ Input devices: Obtains data from outside computer.

� keyboard, mouse, disk or scanner

▫ Output devices: Makes info available outside computer.
� Screens, paper printouts, speakers

▫ System Unit: Disks, Memory, Processor (Central Processing
Units)

Main Hardware Components: Processor

7

} Central Processing Unit or CPU
◦ Brain of a computer system: directly or indirectly controls all the

other components.
• Performs program control (locate, and execute program

instructions), arithmetic, and data movement
• One operation at a time (e.g., a CPU cycle)

} CPU frequency: the frequency of clock in CPU
◦ Not same as “instructions per second”, as some processors run

multiple instructions per cycle
◦ One of many factors affecting the CPU speed

� Within same family of CPUs, an indicator of CPU speed

CPU

8

• Consists of a single, or small number of, chip(s) made of
plastic, metal and mostly silicon

• Composed of several million transistors with enormously
complicated wiring

• The design of CPU itself is not possible without CAD
software

Major Hardware Components: Memory

9

} RAM (Random Access Memory): read-write memory,
volatile/temporary storage
} Holds data and programs that CPU is using, and save results of programs.
} Often called main memory, primary memory
} ROM (Read Only Memory): contains certain programs that must

always be present

} Secondary storage (e.g., a hard drive) provides persistent
storage
} Stores programs or data not currently being used by other units on

secondary storage devices (like hard disk and floppy disks)

Major Hardware Components: Memory

10

} “4 gigabytes (4GB) of RAM”
} 0/1 – one bit, 8 bits = 1 byte
} 1024 bytes = 1 kilobyte (~103 bytes), 1KB
} 10242 bytes = 1 megabyte (~106 byte), 1MB
} 10243 bytes = 1 gigabyte (~109 byte), 1GB
} 240 or 10244 bytes = 1 terabyte (~1012 byte)

Peripherals (Input/Output devices)

11

} Allow the computer to interact with user and other
computers:
} Output: Display, Printer, Speakers
} Input: Mouse, Keyboard
} Input/Output: Network card, Modem

Types of Programs

12

} Application programs: programs that people use to get their
work done

� Word Processor, Web Browsers, etc.
� Media Player, Calculator, Notepad, …

} System programs keep all hardware and software running
together smoothly.
◦ Operating System: software system developed to make using

computers more convenient: Windows, Unix, Linux, MacOS,
Android, …

So what is programming?

13

} Specifying the structure and behavior of a program via a
programming language

} Testing that the program performs its task correctly and
with acceptable performance

} Never forget to check that “it” works

Types of Programming Languages

14

• Three general types of
programming languages
▫ Machine languages

� machine dependent
▫ Assembly languages

� machine dependent
▫ High-level languages

� most are portable
� Specific languages include C, C++,

Python, Go, and Java

Programming language: Machine Code

• Machine instructions: extremely primitive, e.g.
– Move memory contents to a register
– Subtract 100 from a register
– If result is positive, go (jump) to another instruction

• Each type/family of processor has its own set of machine
instructions
• CPU: fetch instructions in machine language (from main memory) and

executes them

• Machine instructions are encoded as numbers:
161 40000 45 100 127 11280

• writing numeric codes manually is tedious and error
prone
– thousands of instructions for a simple program

15

Programming language: Assembly language

• Assembly language
– assigns short names to commands
– Can give names to memory locations
– e.g.

• mov 40000, %eax sub 100, %eax jg 11280

• Makes reading easier for humans
• Translated into machine instructions by the assembler , a

system program
• Still processor dependent
• Still a great many instructions

16

Higher-level programming languages
} Easiest for humans to read and write:

} if(int_rate > 100) cout << "Interest rate error";

} Independent of the underlying hardware
} You can write a program in C++, and it can work in different

Unix machine …

} Translated by compilers into machine instructions
– Very sophisticated programs
– Translate logical statements into sequences of computations

161 4000 45 100 127 11280
– Find memory locations for all variable names

} Much stricter than spoken languages
} Compilers don't like to guess

17

Evolution of C++

18

• Many languages are created with a specific purpose
– database processing
• Scripting languages: PERL, Shell, Ruby, R, Python

– multimedia processing

• General purpose languages can be used for any task
– C: developed to be translated efficiently into fast machine

code, with minimal housekeeping overhead
– C++: adds "object oriented programming" aspects to C

– As of 2022 C++ ranked fourth on TIOBE index, a
measure of the popularity of programming languages,
after Python, C and Java

https://en.wikipedia.org/wiki/TIOBE_index
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)

History of C

19

• Initially designed in 1972 (Kernighan & Ritchie)
• Features were added in response to perceived

shortcomings
• Resulted in different dialects
– Bad for portability

• 1989 — ANSI standard of C completed

History of C++

20

} 1979 — Bjarne Stroustrup of AT&T adds object oriented
features to C, called C with Classes

} 1985 — rename to C++
} 1998 — ISO C++ standard published, i.e., C++98
} 2003 — minor revision C++03.
} 2011 – major revision C++11 released, adding numerous

new features, enlarging the standard library further
} 2014: a minor revision C++14
} 2017: major revision C++17
} 2020: C++20

https://en.wikipedia.org/wiki/C%2B%2B03
https://en.wikipedia.org/wiki/C%2B%2B11
https://en.wikipedia.org/wiki/C%2B%2B14
https://en.wikipedia.org/wiki/C%2B%2B17

Why C++?

21

• C++ is the language that most directly allows you to express
ideas from the largest number of application areas

• C++ is the most widely used language in engineering areas
▫ Mars rovers, animation, graphics, Photoshop, GUI, OS, compilers,

slides, chip design, chip manufacturing, semiconductor tools, etc.
▫ http://www.research.att.com/~bs/applications.html

• C++ is available on almost all kinds of computers
Programming concepts that you learn using C++ can be
used fairly directly in other languages

▫ Including C, Java, C#, and (less directly) Fortran

http://www.research.att.com/~bs/applications.html

22

In this course
• Teach/learn
▫ Fundamental programming concepts
▫ Key useful techniques
▫ Basic Standard C++ facilities

• After the course, you’ll be able to
▫ Write small colloquial C++ programs
▫ Read much larger programs
▫ Learn the basics of many other languages by yourself
▫ Proceed with an “advanced” C++ programming course

• After the course, you will not (yet) be
▫ An expert programmer
▫ A C++ language expert
▫ An expert user of advanced libraries

Our programming environment

Introduction to Unix

23

Our Programming Environment

24

} A Linux server
} User name and password
} Linux server: storm.cis.fordham.edu
} Shared by many students, faculty members

} We access this server using command line interface, using
} Terminal programs on Max, Linux
} PuTTy, a telnet/ssh client for Windows

} a free and open source terminal emulator application a window in
your desktop that works like old time terminal

Your first encounter: shell

25

• Shell: a special-purpose program, command line
interpreter, read commands typed by a user and
execute programs in response to entered commands

• Many different shells:
• Bourne Shell (sh): oldest,
• C Shell (csh):
• Korn Shell (ksh):
• Bourne again Shell (bash)

} To change your login shell, use command
} chsh

Shell: interactive mode

26

• A shell session (a dialog between user and shell)
1. Displays a prompt character, and waits for user to type in a

command line
} Prompt depends on shell: sh, ksh, bash: $ csh: % tcsh: >

} May be customized (with current directory, host, ...)
2. On input of a command line, shell extracts command name

and arguments, searches for the program, and runs it.
3. When program finishes, shell continues to step 1
4. The loop continues until user types “exit” or “ctrl-d” to end

} Note: Log out from storm server when you are done!

UNIX command line

27

• Command name and arguments:
command [[-] option (s)] [option argument (s)] [command argument (s)]

– Command arguments are mostly file or directory names
• cp prog1.cpp prog1.cpp.bak

– Options: used to control behavior of the command
• head -20 lab1.cpp
• wc –w lab2.cpp // count how many words
• Some options come with option argument

– sort –k 1 data.txt
– // use the first column of data.txt as the key to sort

The most important command !!!

Unix System Programming, Spring 201328

• man: displaying online manuals
– Press q to quit, space to scroll down, arrow keys to roll

up/down

man ls

Correcting type mistakes

29

• Shell starts to parse command line only when Enter key
is pressed

• Delete the whole line (line-kill): C-u
• Erase a character: C-h or backspace key
• Many more fancy functionalities:
– Auto-completion: press Tab key to ask shell to auto-complete

command, or path name
– History (repeat command): use arrow (up and down) keys to

navigate past commands
– …

Unix Files

30

} Files: store information
} a sequence of 0 or more bytes containing arbitrary information

} filename
} Case matters, no longer limited to 14 chars
} Special characters such as -, spaces are allowed, but should be

avoided
} Dot files are hidden, i.e., normally not listed by command ls

} File type
} Text (ASCII) file (such as your C/C++ source code)
} Executable file (commands)
} A link to other files, …

Hierarchical file system

31

• Directory: a file that can hold other files
} Advantages of hierarchical file system:
• Files can have same names, as long as they are under different

directories
• Easier for protection
• Organized files / (root)

home

staff

bin

zhang

etc

passwd

dev

cdrom tty24

lib

group

Home directory

32

} Every user has a home directory created for him/her
} When you log in, you are in your home directory
} In home directory, a user usually has permission to create

files/directories, remove files ..
} ~ to refer to current user’s home directory
} ~username to refer to username’s home directory

Getting around in the file system

33

• To create a subdirectory:
– mkdir [option]… directory…
– cd
– mkdir cs1
– cd cs1
– mkdir lab1

• To remove a directory:
– rmdir [option]… directory…
– Report failure if directory is not empty

• Can use rm –rf to remove non-empty directory

Getting around in the file system

34

} ls: list directory contents
} ls [OPTION] … [FILE]
ls: list files/directories under current directory
ls –l: long listing,
[zhang@storm CISC1600]$ ls -l
total 59180
-rw-r--r-- 1 zhang staff 509952 Sep 7 13:02 3_types.ppt
-rw-r--r-- 1 zhang staff 593408 Sep 14 23:38 4_computation.ppt
-rw-r--r-- 1 zhang staff 1297 Sep 2 12:18 account.html
-rw-r--r-- 1 zhang staff 3304448 Nov 7 18:24 ArrayVector1.ppt
drwxr-xr-x 2 zhang staff 4096 Dec 8 22:36 Codes

35

Absolute pathname, path
/ (root)

home

staff

bin

zhang

etc

passwd

dev

cdrom tty24

lib

n Pathname of a file/directory: location of file/directory in the file
system
n How do you tell other where your prog. Is located ?

n Absolute pathname: path name specified relative to root, i.e.,
starting with the root (/)
n e.g., /home/staff/zhang
n What’s the absolute pathname for the “passwd” file?

Current directory & Relative
Pathname

36

} Tiring to specify absolute pathname each time
} To make life easier: working directory

} User can move around the file system, shell remembers where
the user is (i.e., current directory)

} To check your current directory, use command:
} pwd

Relative pathname

37

} Absolute pathname: specified relative to root
} Relative pathname: specified relative to current directory

} . (current directory), .. (parent directory, one level up)
} If current directory is at /home/staff/zhang, what is the relative

pathname of the file passwd?
} ../../../etc/passwd: go one level up, go one level up, go one level

up, go to etc, passwd is there

/ (root)

home

staff

bin

zhang

etc

passwd

dev

cdrom tty24

lib

Relative pathname

38

} For all commands that take file/directory name as
arguments, you can use pathnames of the file/directory

} Example:
} cd /home/staff/zhang/public_html
} pico cs1600/index.html
} cd .. (go up one level to parent directory)
} cp ../prog2.cpp prog2.cpp

File Viewing Commands

39

• cat: concatenate files and display on standard output (i.e., the
terminal window)
– cat [option] … [file] …
– cat proj1.cpp
– cat proj1.cpp proj2.cpp
– cat –n proj1.cpp // display the file with line #

• more: file perusal filter (i.e., displaying file one screen at a time)
– more proj1.cpp

• less: similar to more
• head, tail: display the beginning or ending lines of a file
– tail -f output // display the file, append more lines as the

file grows

[] means the argument is optional
… means there can be multiple

arguments of this type

File manipulation commands

40

• rm: remove one or multiple files or directories
– rm [option] … FILE …
– rm temp
– rm temp1 temp2

• rm –r: remove directories and their sub-dirs recursively
• rm –i : confirm with user before removing files

File manipulation commands (2)

41

} cp: copy file or directory
} cp [OPTION] SOURCE DESTINATION

} To make a backup copy of your program before dramatic
change
} cp proj1.cpp proj1.cpp.bak

} To make a backup copy of a whole directory
} cp –r lab1_dir lab1_dir_backup
} -R, -r, --recursive: copy directories recursively

File manipulation commands (3)

42

} mv: move (rename) files/directories
} mv [OPTION] SOURCE DEST

} Rename SOURCE to DEST
} mv proj1.cpp lab1.cpp

} mv [OPTION]… SOURCE… DIRECTORY
} Move SOURCE to DIRECTORY
} mv lab1.cpp lab2.cpp CISC3130

First C++ Program

43

Edit, Compile, and Execute C++
Program

44

} Edit the program using C++, save it in a file with suffix .cc,
or .cpp, e.g., lab1.cc
} Editor we use: emacs

} Compile the program (actually multiple steps invovled:
preprocess, compile and link): type following command in
command line:
} g++ lab1.cc

} g++ lab1.cc –o Helloworld

} Run the executable file
} ./a.out

} ./Helloworld

lab1.cc

45

// Text-printing program.
#include <iostream> // allows program to output data to

// the screen

// function main begins program execution
int main()
{

std::cout << "Welcome to C++!\n"; // display message

return 0; // indicate that program ended successfully
} // end function main

Important Parts of a C++ program

46

} Comments: //, /* …. */
} Preprocessor directives : #include
} Function main

} Body of the function
} Return statement
} Other statements

} White spaces
} Blank lines, space characters and tabs
} Delimiter, used to make programs easier to read
} Extra spaces are ignored by the compiler

Comments

47

• Explain programs to other programmers
▫ Improve program readability

• Ignored by compiler => does not change behavior of a
program

• Single-line comment
▫ Begin with //

• Multi-line comment
▫ Start with /*
▫ End with */

Preprocessor Directives

48

} Processed by preprocessor before compiling

} Begin with #
} Example

} #include <iostream>

} Tells preprocessor to include the input/output stream header file
<iostream>

Function main

49

} A part of every C++ program
} Every program has exactly one main function
} main is a keyword.

} keyword : a word in code that is reserved by C++ for a specific use.
} Header of function main : int main()

} main() is a function that takes no arguments ()
and returns an int (integer value) to indicate success or

failure
} Body of a function is delimited by braces ({ })

Statements

50

} Lines in your program that instruct the computer to
perform an action

} All statements end with a semicolon (;)
} Examples :

} return 0;

} std::cout << " Hello world!\n ";

return Statement

51

} One of several means to exit a function
} When used at the end of main

} The value 0 indicates the program terminated successfully
} Example

} return 0;

Output Statement (1)

52

} std::cout << " Hello world!\n ";
} std::cout

} Standard output stream object, something that represents your
“standard” output device (normally linked to computer screen)

} Defined in input/output stream header file <iostream>
} We are using a name (cout) that belongs to “namespace” std.

} Stream insertion operator <<
} Value to right (right operand) inserted into left operand.

Output Statement (2)

53

std::cout << " Hello world!\n ";

} Quotes delimit a string literal
} NOTE: “smart” quotes “ ” will cause compiler

problems.
} so make sure your quotes are of the style " "

Output Statement (3)

54

} Escape character : backslash : "\"
} Escape sequence : a character preceded by backslash

} Indicates “special” character output that cause some actions to
the output

} e.g.
} \n : newline, move cursor to beginning of next line on the screen
} \t: horizontal tab, move cursor to the next tab stop.

“Hello World!”

55

// Text-printing program.
#include <iostream> // allows program to output data

to // the screen

// function main begins program execution
int main()
{

std::cout << "Welcome to C++!\n"; // display
message

return 0; // indicate that program ended
successfully

} // end function main

Hello, world!

56

} The first program help you get used to
◦ Editor
◦ Compiler
◦ Program development environment
◦ Program execution environment

} Type in the program carefully
◦ After you get it to work, please make a few mistakes to see

how the tools respond; for example
� Forget the header
� Forget to terminate the string
� Misspell return (e.g. retrun)
� Forget a semicolon
� Forget { or }
� …

Modifying Our First C++ Program

Spring 2013CISC1600 Xiaolan Zhang57

} Print text on one line using multiple statements
} Each stream insertion resumes printing where the previous

one stopped
} Statements:
Std::cout << “Welcome ”;

Std::cout << “to C++!\n”;

Modifying Our First C++ Program

58

} Print text on several lines using a single statement.
} Each newline escape sequence positions the cursor to the

beginning of the next line
} Two newline characters back to back outputs a blank line
} Example statement :
Std::cout << “Welcome\nto\n\nC++!\n”;

Programming

59

} Programming is fundamentally simple
} Just state what the machine is to do

} So why is programming hard?
} We want “the machine” to do complex things

} And computers are nitpicking, unforgiving, dumb beasts
} The world is more complex than we’d like to believe

} So we don’t always know the implications of what we want
} “Programming is understanding”

} When you can program a task, you understand it
} When you program, you spend significant time trying to understand

the task you want to automate

Programming

60

} Except for the work you hand in as individual contributions,
we strongly encourage you to collaborate and help each other

} If in doubt if a collaboration is legitimate: ask!
} Don’t claim to have written code that you copied from others
} Don’t give anyone else your code (to hand in for a grade)
} When you rely on the work of others, explicitly list all of your sources –

i.e. give credit to those who did the work
} Don’t study alone when you don’t have to

} Form study groups
} Do help each other (without plagiarizing)

Comments/Suggestions

61

} Please mail questions, constructive comments and feedbacks to
xzhang@fordham.edu

} On style, contents, detail, examples, clarity,
conceptual problems, exercises, missing
information, depth, etc.

} Course website
} http://storm.cis.fordham.edu/~zhang/cs1600

In Summary

62

¨ We learnt about Computer System Organization
¨ Hardware: CPU, Memory, Secondary Storage, Input and

Output
¨ Software & Programming Languages

¡ Application program vs System program

¨ Programming in C++
¡ Different parts of C++ source code
¡ Source code =>Preprocessor, compiler, linker => Executable

The next lecture

63

} Will talk about types, values, variables, declarations, simple
input and output, very simple computations, and type
safety.

