
Dr. Xiaolan Zhang
Fordham University

C++ Basics

1

/* This is a program that simply prints out Hello world
to the terminal, and move cursor to next line
By X. Zhang,

*/

#include <iostream> //This is preprocessor directive

int main()
{

std::cout <<"Hello world\n"; //display to terminal window
// this is a blank line, added here for readability

return 0; //program exits, return 0 to indicate success
}

Curly braces enclose the body of function
2

/* This is a program that simply prints out Hello world
to the terminal, and move cursor to next line
By X. Zhang,

*/

#include <iostream> //This is preprocessor directive
using namespace std; // In order to use cin, cout etc declared in std

int main()
{

cout <<"Hello world\n"; //display to terminal window
// this is a blank line, added here for readability

return 0; //program exits, return 0 to indicate success
}

Curly braces enclose the body of function
3

Keyword

4

● In previous example, the following words are keywords
of C++
● int, main, return, using …

● Keywords (also called reserved words)
● Are used by the C++ language
● Must be used as they are defined in the programming language
● Cannot be used for other purposes

Special characters in C++

5

● # is used to start a directive
● ; is used to end an statement
● // is used to start a single line of comments
● /* and */ are used to enclose multi-line comments
● Double quotation marks " used to enclose a string

constant
● Note that this is not the same as “”

• Single quotation marks used to enclose a character
constant

• Important to use plain text editor to edit your program: not
word, WordEdit, as they introduce other characters, and convert
quotations marks…

cout statement
cout <<"Hello world\n";
● cout: pronounced as see-out, stands for character output
• Defined in iostream, a header file (a source code) that is part of C++

standard library
• Represents the terminal window that the program is running from

● << insertion operator: to insert (display) something in terminal
window
• Can display multiple values in single statement, e.g.,
• cout <<"Hello world, " << "this is my first program!\n";
• cout <<"Hello world, "

<< “this is my first program!\n";
One statement can be split
into multiple lines.

6

Computation

● Input: from keyboard, files, other input devices, other programs, other parts of a
program

● Computation – what our program will do with the input to produce the output.
● Output: to screen, files, other output devices, other programs, other parts of a program

(input) data (output) data

data

Code

8

Program structure

Single batch of input Multiple batch of input

1 Read inputs

2 Computation

3 Write output

1 Read inputs

2 Computation

3 Write output

4 Go back to 1

9

Input and oOytpt
// read first name:
#include <iostream>
#include <string>
using namespace std;

int main()
{

cout << "Please enter your first name (followed " << "by 'enter'):\n";
string first_name;
cin >> first_name;
cout << "Hello, " << first_name << '\n';

}

// note how several values can be output by a single statement
// a statement that introduces a variable is called a declaration
// a variable holds a value of a specified type
// the final return 0; is optional in main()
// but you may need to include it to pacify your compiler

10

Input and Output

Input and Type
� We read data/or input into a variable
¡ Here, first_name
� A variable has a type
¡ Here, string
� The type of a variable determines what operations

we can do on it
� Here, cin>>first_name; reads characters

until a whitespace character is seen
� White space: space, tab, newline, …

11

Overview

❑ Variables and Assignments

❑ Data Types and Expressions

❑ Input and Output

❑ Program Style

12

C++ Variables
● Variables are like small blackboards
● We can write a number on them
● We can change the number
● We can erase the number

● C++ variables are memory locations
● We can write a value in them
● We can change the value stored there
● We cannot erase the memory location
● Some value is always there

13

C++ Variables
� A variable is some memory that can hold a value of a given

type
� A variable has a name

� Each variable has name, type, value
A declaration names a variable

int a = 7;
char c = 'x';
string s = "qwerty";

14

7
'x'

"qwerty"6

a:

s:

c:

Size of memory varies for objects
of different types !

Display 2.1 (1/2)

15

Display 2.1
(2 /2)

16

Identifiers

17

● Variables names are called identifiers
● Choosing variable names
● Use meaningful names that represent data to be stored
● First character must be
● a letter or the underscore character, _

● Remaining characters must be
● Letters, numbers, underscore character

● Keywords, such as return, main, if, … cannot be used as
identifiers

Declaring Variables
● Before use, variables must be declared
● Declaration syntax:

type_name variable_1 , variable_2, . . . ;

● Tells the compiler: I need variable(s) named … to store .. type of data
int number_of_bars;

double one_weight, total_weight;

Try this: what does the above three declarations say?

How about this? char response, option;

18

Two locations for variable declarations

Immediately prior to use

int main()
{

…
int sum;
sum = score1 + score 2;
…
return 0;

}

● At the beginning

int main()
{

int sum;
…
sum = score1 +

score2;
…

return 0;
}

19

Assignment Statements
● An assignment statement changes the value of a variable
● total_weight = one_weight + number_of_bars;
● total_weight is set to the sum one_weight + number_of_bars

●Assignment statements end with a semi-colon
●Left hand side (LHS): variable whose value is to be

changed
●Right hand side (RHS): new value for the LHS

variable:
● Constants -- age = 21;
● Variables -- my_cost = your_cost;
● Expressions -- circumference = diameter * 3.14159;

20

Assignment Statements
● The ‘=‘ operator in C++ is not an equal sign
● The following statement cannot be true in algebra

● number_of_bars = number_of_bars + 3;

● In C++ it means the new value of number_of_bars
is the previous value of number_of_bars plus 3

21

Initializing Variables
● Declaring a variable does not give it a value
● Giving a variable its first value is initializing the variable

● Variables are initialized in assignment statements

double mpg; // declare the variable
mpg = 26.3; // initialize the variable

● Declaration and initialization can be combined
● Method 1

double mpg = 26.3, area = 0.0 , volume;
● Method 2

double mpg(26.3), area(0.0), volume;

22

Exercises
● Can you
● Declare and initialize two integers variables to zero?

The variables are named feet and inches.

● Declare and initialize two variables, one int and one double?
Both should be initialized to the appropriate form of 5.

● Give good variable names for identifiers to store
● the speed of an automobile?
● an hourly pay rate?
● the highest score on an exam?

23

Overview
❑Variables and Assignments

❑Data Types and Expressions

❑ Input and Output

❑Program Style

24

Types
● C++ provides a set of types
● E.g. bool, char, int, double
● Called “built-in types”

● C++ programmers can define new types
● Called “user-defined types”
● We'll get to that eventually, mostly in CS2

● C++ standard library provides a set of types
● E.g. string, vector, complex
● Technically, these are user-defined types
● they are built using only facilities available to every user

25

Builtin Types (1)
● Boolean type represents value of true or false
• bool
• ex: bool invalidInput; // used to mark invalid input

●Character type represents a single character, such as q, a, B,
\n, (, …
• char
• Ex: char choice = ‘q’;

26

Builtin Types (2):Integer Number types
● Integer numbers (int, short,long) are whole numbers without

a fractional part
● Includes zero and negative numbers
● Used for storing values that are conceptually whole numbers

(e.g. pennies)
● Process faster and require less storage space (compared to

floating-point numbers)

27

Types and literals
int pennies = 8;
cout << " Hello world\n ";
� Literal constants: values that occurs in the program

� Literal, as we can only speak of it in terms of its value
� Constant: its value cannot be changed

� How to write literals?
� Depending on the type of the literal
� 8 is of type int, “Hello world\n” is of type string

� More examples:
� bool validInput = true;
� bool continue = false; // reserved words
� Character literals: 'a', 'x', '4', '\n', '$'.
� Integer literals: 0, 1, 123, -6, 0x34, 0xa3, 024
� Floating point literals: 1.2, 13.345, .3, -0.54, 1.2e3, . 3F, .3F
� String literals: "asdf", "Howdy, all y'all!“

28

Builtin Types(3): Floating point types
● Floating-point types represents number with decimal points,

such as 3.14
• double, and float
• Process slower and require more storage space

29

Type char
● char: can be any single character from the keyboard
● To declare a variable of type char:

char letter;
● Character constants are enclosed in single quotes

char letter = 'a';
● Strings constant, even if contain only one character,

is enclosed in double quotes
● cout << "Hello world ";
●"a" is a string of characters containing one character
● 'a' is a value of type character

30

31

More on floating point constants
● Simple form must include a decimal point
● e.g., 34.1 23.0034 1.0 89.9

● Scientific Notation form
● e.g. 3.41e1 means 34.1

3.67e17 means 367000000000000000.0
5.89e-6 means 0.00000589

●Number left of e does not require a decimal point
●Exponent cannot contain a decimal point

32

C++ Standard Library Type: string
• string is a class, different from primitive data types discussed so

far
– Requires the following be added to the top of your program:

#include <string>

– Use double quotes around the text to store into the string
variable

• To declare a variable of type string:

string name = "Apu Nahasapeemapetilon";

33

34

Overview
❑Variables and Assignments

❑Data Types

❑Expressions

❑ Input and Output

❑Program Style

35

Operation on data

■ Once we have variables and constants, we can begin to
operate with them.

■ C++ defines operators.
■ Operators in C++ are mostly made of signs that are not part

of alphabet but are available in all keyboards.
■ Shorter C++ code and more international

36

Operators
■ Assignment (=)

■ The assignment operator assigns a value to a variable.
■ Arithmetic operators (+, -, *, /, %)

■ five arithmetical operations supported by the C++ language
are
■ Addition: +
■ subtraction: -
■ Multiplication: *
■ Division: /
■ Modulo: %, gives remainder of a division of two values.

a = 11 % 3; // a will contain the value of 2

37

Assignment and increment

// changing the value of a variable
int a = 7; // a variable of type int called a

// initialized to the integer value 7
a = 9; // assignment: now change a's value to 9

a = a+a; // assignment: now double a's value

a += 2; // increment a's value by 2
// a shorthand notation for a = a+2;

++a; // increment a's value (by 1)
//shorthand notation for a = a+1;

38

7

9

18

20

21

a:

Simple arithmetic
// do a bit of very simple arithmetic:
#include <math.h>

int main()
{

cout << "please enter a floating-point number: "; // prompt for a number
double n; // floating-point variable
cin >> n;
cout << "n == " << n

<< "\nn+1 == " << n+1 // '\n' means “a newline”
<< "\nthree times n == " << 3*n
<< "\ntwice n == " << n+n
<< "\nn squared == " << n*n
<< "\nhalf of n == " << n/2
<< "\nsquare root of n == " << sqrt(n) // library function
<< endl; // another name for newline

}

39
If the user enters 25 upon the prompt, what’s the output?

Arithmetic Expressions
● Arithmetic operators can be used with any numeric type, i.e.,

operand can be any numeric type
● Result of an operator depends on types of operands
● If both operands are int, result is int
● If one or both operands are double, result is double

40

Division of Doubles
● Division with at least one double operand produces expected

results
double divisor, dividend, quotient;
divisor = 3.0;
dividend = 5.0;
quotient = dividend / divisor;
result: quotient = 1.6666…

● Result is same if either dividend or divisor is of type int

41

Division of Integers
● int / int produces an integer result

int dividend, divisor, quotient;
dividend = 5;
divisor = 3;
quotient = dividend / divisor;

● The value of quotient is 1, not 1.666…
● Integer division does not round result, fractional part is

discarded!

42

Integer Remainders
● % operator gives remainder from integer division

int dividend, divisor, remainder;
dividend = 5;
divisor = 3;

remainder = dividend % divisor;
The value of remainder is 2

43

Discussion

44

● “Giving changes” for Cashier program
● Instruct the cashier to give changes, e.g., a change of $12.34

should be given in
● One 10 dollar bill
● two 1 dollar bills
● One quarter
● One nickel
● Four pennies

Arithmetic Expressions
● Use spacing to make expressions readable
●Which is easier to read?

x+y*z or x + y * z
● Precedence rules for operators are the same as

used in your algebra classes
● Use parentheses to alter the order of operations

x + y * z (y is multiplied by z first)
(x + y) * z (x and y are added first)

45

46

Operator Shorthand
● Operator shorthand: can be used when applying an arithmetic

operation on a variable and saving result back to the varilable,
●+=
e.g., count = count + 2; becomes count += 2;
●*=
e.g., bonus = bonus * 2; becomes bonus *= 2;
●/=
e.g., time = time/rush_factor; becomes time /= rush_factor;
●%=
e.g., remainder = remainder % (cnt1+ cnt2); becomes

remainder %= (cnt1 + cnt2);

47

Increment/Decrement
● Unary operators require only one operand
● + in front of a number such as +5
● - in front of a number such as -5

● ++ increment operator
● Adds 1 to value of a variable

x ++;
is equivalent to x = x + 1;

● -- decrement operator
● Subtracts 1 from value of a variable

x --;
is equivalent to x = x – 1;

48

Overview
❑Variables and Assignments

❑Data Types

❑Expressions

❑ Input and Output

❑Program Style

49

Input and Output
● A data stream is a sequence of data: in the form of characters or

numbers
● An input stream is data for the program to use, originating from

keyboard, a file …
● An output stream is the program’s output, destining to monitor,

or a file , ..
● Include directives: add library files to our programs
● To make definitions of the cin and cout available :

#include <iostream>
● Using directives: include a collection of defined names
● To make names cin and cout available to our program:

using namespace std;

50

Output using cout
● cout is an output stream for program to send data to monitor
● insertion operator "<<" inserts data into cout

● cout << number_of_bars << " candy bars\n";
● sends two items to monitor: value of number_of_bars, and quoted string

constant
● No space added between items, therefore space before the ‘c’ in candy,
● A blank space can also be inserted with

cout << name << " " <<age <<endl ;
● A new insertion operator is used for each item of output
● same as

cout << number_of_bars ;
cout << " candy bars\n";

● cout an expression directly
cout << "Total cost is $" << (price + tax);

51

Formatting Output
● Escape sequences: tell the compiler to treat characters

in a special way, allow one to specify special characters
● '\' is escape character
● To create a newline in output use \n, or endl;

cout << "Hello\n";
cout << "Hello"<<endl;

● Other escape sequences:
\t -- a tab
\\ -- a backslash character
\" -- a quote character

● When printing receipt, use \t to line up different columns
● Other ways possible …

52

Formatting Real Numbers
● Real numbers (type double) produce a variety of outputs

double price = 78.5;
cout << "The price is $" << price << endl;

● output could be any of these:
The price is $78.5
The price is $78.500000
The price is $7.850000e01

● unlikely to get:
The price is $78.50

53

Showing Decimal Places
● cout includes tools to specify the output of type double
● To specify fixed point notation
● setf(ios::fixed)

● To specify that decimal point will always be shown
● setf(ios::showpoint)

● To specify that two decimal places will always be shown
● precision(2)

● e.g.: cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
cout << "The price is $"

<< price << endl;

54

Input Using cin
● cin is an input stream bringing data from the keyboard
● extraction operator (>>) removes data to be used
● e.g.,

cout << "Enter the number of bars in a package\n";
cout << " and the weight in ounces of one bar.\n";
cin >> number_of_bars; // program will wait for input
cin >> one_weight;

● code prompts user to enter data then reads two data items from
cin
● first value read is stored in number_of_bars
● second value read is stored in one_weight
● Data is separated by spaces when entered

55

Reading Data From cin
● Multiple data items are separated by spaces (space, tab, newline)
● cin skips blanks and line breaks looking for data

● Data is not read until enter key is pressed
● Allows user to make corrections

cin >> v1 >> v2 >> v3;
● Requires three space separated values
● User might type

34 45 12 <enter key>
● Or

34 <enter key>
45 <enter key>
12 <enter key>

56

Reading Character Data
● following reads two characters but skips any space that might be

between
char symbol1, symbol2;
cin >> symbol1 >> symbol2;

● User normally separate data items by spaces
J D

● Results are same if data is not separated by spaces
JD

57

Designing Input and Output
● Prompt the user for input that is desired
● cout statements provide instructions

cout << "Enter your age: ";
cin >> age;

● Notice the absence of a new line before using cin

● Echo the input by displaying what was read
● Gives the user a chance to verify data

cout << age << " was entered." << endl;

58

Exercise
● Can you
● write an input statement to place a

value in the variable the_number?
● Write the output statement to prompt for

the value to store in the_number?
● Write an output statement that produces a

newline?
● Format output of rational numbers to show

4 decimal places?

59

Overview
❑Variables and Assignments

❑Data Types

❑Expressions

❑ Input and Output

❑Constants

60

Program Style - Constants
● Literal constants: have no mnemonic value, i.e., no name
● total_price = large*14.82+small*12.34;
● cout << ″Hello world″;
● Cons: difficult to find and change when needed, harder to understand

● Named constants: give a name to a constant
● Allow us to change all occurrences simply by

changing value of constant
● e.g.:

const int WINDOW_COUNT = 10;
declares a constant named WINDOW_COUNT

● const is keyword to declare a constant
● Its value cannot be changed by the program (unlike a variable)
● Common practice: name constants with all capitals

61

Summary
● New concepts:
● Variable, identifier, data type
● Expressions
● Statements: declaration statements, assignment statements
● Constant: literal constant and named constant

● We learnt how to
● Declare a variable
● Assign value to a variable
● Input/output: how to read a value from keyboard, how to write to

terminal (or, monitor)
● Write arithmetic expressions

62

