
CISC1600

Dr. X. Zhang, Fordham University

C++ Basics: flow control

Outline

2

� Flow control and branch

� Boolean expression
� Comparison operators
� Boolean operations: &&, ||, !

� Loop: to repeat statements
� While loop
� Do/while loop
� Infinite loop

� Programming Style
� Comments, indentations, named constant

Flow of Control

3

� Flow of control: order in which statements are executed
� So far, our program exits from the beginning of main() function to

the end or until it reaches a return statement
int main()
{

int n;
cout <<
cin >>
//some calculation…
cout << …
return 0;

}

Calculate wages for hourly workers

4

� Imagine a program that
� Reads number of hours someone works that week, hourly

rate
� Calculates pay as follows:

� If works for up to 40 hours: hourly rate * number of hours
� If works overtime (over 40 hours): hourly rate * 40 hours, and those over 40

hours are paid with .5 higher rate (i.e., 1.5* hourly rate * overtime hours)

� And outputs the pay

� Can you write expression for second case? Assuming:
� int hours;
� double rate;

Calculate wages for hourly workers

5

� Calculates pay based upon overtime or not
� Requires the program to choose between two alternative

statements:
� Use first statement if hours is no more than 40

� Use second statement otherwise

� Branch: allow program choose between two alternatives

Implement Branch

6

� if-else statement is used in C++ to perform a branch

if (hours > 40)
wage = rate * 40 + 1.5 * rate * (hours - 40);

else
wage = rate * hours;

What happens here?

if-else statement

7

� if (boolean expression)
statement1

else
statement2

� When boolean expression is true
� Only statement1 is executed

� When boolean expression is false
� Only statement2 is executed

8

Compound Statements

9

� Compound Statement: one or more statements enclosed in { }
� Branches of if-else statements often need to execute more that one

statement
� if (boolean expression)

{
statement 1;
….
statement n;

}
else
{

statement1;
…

}

10

11

Outline

12

� Flow control and branch

� Boolean expression
� Comparison operators
� Boolean operations: &&, ||, !

� Loop: to repeat statements
� While loop
� Do/while loop
� Infinite loop

� Programming Style
� Comments, indentations, named constant

Boolean Expressions

13

� Boolean expressions: expressions that are either true
or false, i.e., have a bool value

� Comparison operators: used to compare variables
and/or numbers, and generate a bool value
� e.g., (hours > 40) evaluates to true if value of hours is

greater than 40; otherwise evaluates to false
� e.g., (choice==‘q’) evaluates to true if choice is equal

to ‘q’; otherwise, evaluates to false

14
No spaces allowed between
the two symbols

Branches Exercise

15

� Can you
� Write an if-else statement that outputs the word

High if the value of the variable score is greater
than 100 and Low if the value of score is at most
100? The variables are of type int.

� Write an if-else statement that outputs the word
Warning provided that either the value of the variable
temperature is greater than or equal to 100, or the
of the variable pressure is greater than or equal to
200, or both. Otherwise, the if_else sttement outputs
the word OK. The variables are of type int.

Boolean operations

16

� Arithmetic operations are applied to numerical variables
or constants:
� Five operations: +, -, *, /, %
� E.g., (f – 32) * 5.0 / 9.0 // to convert Farenhite degree to

celsius degree

� Boolean Operations: applied to boolean expressions or
variables
� Three operations: &&, ||, !
� E.g., (x > y && x > z)
� E.g., !(x==y)

AND operation

17

� && -- AND operator
� Syntax: (boolean_exp1) && (boolean_exp2)
� True if both boolean expressions are true

� e.g: ((2 < x) && (x < 7))
� True only if x is between 2 and 7
� Inside parentheses are optional but enhance meaning

Operand_1 Operand_2 Operand1 && Operand2

True True true

True False True

False True False

False False false

OR

18

� | | -- The OR operator
� Syntax: (bool_exp_1) | | (bool_exp_2)
� True if either or both expressions are true

� e.g: if ((x = = 1) | | (x = = y))
� True if x contains 1
� True if x contains same value as y
� True if both comparisons are true

Operand1 Operand2 Operand1 ||
Operand2

True True True

True False True

False True True

False False False

NOT: negation

19

� ! -- negates any boolean expression
� !(x < y)

� True if x is NOT less than y

� !(x = = y)
� True if x is NOT equal to y

� ! Operator can make expressions difficult to understand
…use only when appropriate

Operand !operand

True False

False true

Boolean Expression Practices

20

� How to check for errors in user input?
� e.g., In hourly worker program, hours should not be negative,

should not be over 84
� How to report such errors?

� Be careful translating inequalities to C++
� if x < y < z translates as

if ((x < y) && (y < z))

NOT

if (x < y < z)

Pitfall: Using = or ==

21

� ' = ' is the assignment operator
� Used to assign values to variables
� x = 3;

� '= = ' is equality operator
� Used to compare values
� if (x == 3)

� The compiler will accept this :
if (x = 3)

but stores 3 in x instead of comparing x and 3
� Since the result is 3 (non-zero), the expression is true

Outline

22

� Flow control and branch

� Boolean expression
� Comparison operators
� Boolean operations: &&, ||, !

� Loop: to repeat statements
� While loop
� Do/while loop
� Infinite loop

� Programming Style
� Comments, indentations, named constant

Simple Loops

23

� When an action must be repeated, a loop is used
� C++ includes several ways to create loops

� while-loop
e.g., while (count_down > 0)

{
cout << "Hello ";
count_down -= 1;

}
Output: Hello Hello Hello
when count_down starts at 3

24

While Loop Operation

25

� First, boolean expression is evaluated
� If false, program skips to line following

while loop
� If true, body of loop is executed

� During execution, some item from boolean
expression
is changed

� After executing loop body, boolean
expression is checked again repeating
process until expression becomes false

� A while loop might not execute at all if
boolean expression is false on the first
check

while (count_down > 0)
{

cout << "Hello ";
count_down -= 1;

}

Boolean expression

The body of loop

26

do-while loop

27

� A do-while loop is always executed at least once
� body of the loop is first executed
� boolean expression is checked after the body

has been executed
� Syntax:

do
{

statements to repeat
} while (boolean_expression);

28

Slid
e 2-
29

Sample Program

30

� Bank charge card balance of $50
� 2% per month interest

� How many months without payments before
your balance exceeds $100

� After 1 month: $50 + 2% of $50 = $51

� After 2 months: $51 + 2% of $51 = $52.02
� After 3 months: $52.02 + 2% of $52.02 …

31

Infinite Loops

32

� infinite loops: loops that never stop are
� loop body should contain a line that will eventually cause

boolean expression to become false

� e.g.,: print odd numbers less than 12
x = 1;
while (x != 12)
{

cout << x << endl;
x = x + 2;

}
� Better to use this comparison: while (x < 12)

Exercises

33

• Can you show the output of this code if x is of type int?
x = 10;

while (x > 0)
{

cout << x << endl;
x = x – 3;

}

– Show the output of the previous code using the
comparison x < 0 instead of x > 0?

Outline

34

� Flow control and branch

� Boolean expression
� Comparison operators
� Boolean operations: &&, ||, !

� Loop: to repeat statements
� While loop
� Do/while loop
� Infinite loop

� Programming Style
� Comments, indentations, named constant

Program Style

35

� A program written with attention to style
� is easier to read
� easier to correct
� easier to change

� Indentations, Comments, Named Constants

Program Style - Indenting

36

� Items considered a group should look like a group
� Skip lines between logical groups of statements
� Indent statements within statements

if (x = = 0)
statement;

� Braces {} create groups
� Indent within braces to make the group clear
� Braces placed on separate lines are easier to locate

Program Style - Comments

37

� // is the symbol for a single line comment
� Comments are explanatory notes for the programmer
� All text on the line following // is ignored by the

compiler
� Example: //calculate regular wages

gross_pay = rate * hours;
� /* and */ enclose multiple line comments

� Example: /* This is a comment that spans
multiple lines without a
comment symbol on the middle line

*/

Program Style - Constants

38

� Number constants have no mnemonic value
� Number constants used throughout a program

are difficult to find and change when needed

� Constants
� Allow us to name number constants so they have

meaning
� Allow us to change all occurrences simply by

changing the value of the constant

Constants

39

� const is the keyword to declare a constant
� Example:

const int WINDOW_COUNT = 10;
declares a constant named WINDOW_COUNT

� Its value cannot be changed by program like a variable
� It is common to name constants with all capitals

Exercises

40

� Can you
� Create a named constant of type double?

� Determine if a program can modify the value of a
constant?

� Describe the benefits of comments?

� Explain why indenting is important in a program?

� Explain why blank lines are important in a program?

Summary

41

� Flow control and branch

� Boolean expression
� Comparison operators
� Boolean operations: &&, ||, !

� Loop: to repeat statements
� While loop
� Do/while loop
� Infinite loop

� Programming Style
� Comments, indentations, named constant

