
CISC1600,Fordham Univ.

X. Zhang

Chapter 3: More Flow of Control

Overview

Slide 3- 2

� Using Boolean Expressions

� Truth table, evaluate boolean expression

� Precedence

� Multiway Branches

� Embeded if-else statement

� More about C++ Loop Statements

� Designing Loops

Flow Of Control

Slide 3- 3

� Flow of control refers to the order in which
program statements are performed
� We have seen following ways to specify flow of control

� if-else-statement, if statement
� while-statement

� New methods
� switch-statements
� for-statements

Review: if statements
� To implement branching, use if statements

if (boolean_expression)
statement1

else
statement2

if (boolean_expression)
statement

Slide 1- 4

• Boolean expression is
enclosed by ()
• statements should be indented by
one more level. It can be
1. simple statement
2. block statement, i.e.,

a sequence statement enclosed
with { }

3. empty statement
4. loop statement
5. if statement, i.e., nested if

statement

Using Boolean Expressions

Slide 3- 5

� A Boolean Expression is an expression that is
either true or false
�Using relational operations such as
� = = , < , and >= which produce a boolean value

�boolean operations
� &&, | |, and !

� Type bool allows declaration of variables that
store value true or false

Evaluating Boolean Expressions

Slide 3- 6

� Boolean expressions are evaluated step-by-step
� Refer to truth tables
� e.g., if y is 8, expression

!((y < 3) | | (y > 7))
is evaluated in following sequence

! (false | | true)

! (true)

false

Slide 3- 7

Order of Precedence: boolean
expression

Slide 3- 8

� If parenthesis are omitted from boolean expressions, default
precedence of operations is:
� Perform ! operations first
� Perform relational operations such as < next
� Perform && operations next
� Perform | | operations last

Precedence Rules

Slide 3- 9

� Items in expressions are grouped by precedence
rules for arithmetic and boolean operators
� Operators with higher precedence are performed first
� Binary operators with equal precedence are

performed left to right
� Unary operators of equal precedence are

performed right to left

Slide 3- 10

Precedence Rule Example

Slide 3- 11

� The expression
(x+1) > 2 | | (x + 1) < -3

is equivalent to
((x + 1) > 2) | | ((x + 1) < -3)

� Because > and < have higher precedence than | |, and
is equivalent to

x + 1 > 2 | | x + 1 < - 3
� Evaluating x + 1 > 2 | | x + 1 < - 3

� First apply the unary –
� Next apply the +'s
� Now apply the > and <
� Finally do the | |

Short-Circuit Evaluation (lazy
evaluation)

Slide 3- 12

� Sometimes, boolean expressions do not need to be
completely evaluated
� E.g., if x is negative, the value of expression

(x >= 0) && (y > 1)
can be determined by evaluating only (x >= 0)

� C++ short-circuit evaluation
� If value of leftmost sub-expression

determines final value of expression, rest
of expression is not evaluated

� E.g., (x==1 || x==2) if x equals to 1, second part is
not evaluated

Using Short-Circuit Evaluation

Slide 3- 13

� to prevent run-time errors
� Consider

if ((kids != 0) && (pieces / kids >= 2))
cout << "Each child may have two pieces!“;

� If value of kids is zero, short-circuit evaluation
prevents evaluation of (pieces / 0 >= 2)
� Division by zero causes a run-time error

Type bool and Type int

Slide 3- 14

� C++ can use integers as if they were Boolean
values
� Any non-zero number (typically 1) is true
� 0 (zero) is false

� E.g., int n = 10;
while (n)
{

cout <<″*″;
n--;

}

Problems with !

Slide 3- 15

� The expression (! time > limit), with limit = 60,
is evaluated as

(!time) > limit
� If time is an int with value 36, what is !time?

� False or zero since it will be compared to an integer
� The expression is further evaluated as

0 > limit
false

� The intent of the previous expression was most likely the
expression

(! (time > limit))
which evaluates as

(! (false))
true

Avoiding !

Slide 3- 16

� Just as not in English can make things not undifficult to read,
the ! operator can make C++ expressions difficult to
understand

� Before using the ! operator see if you can express the same
idea more clearly without the ! operator

Exercise

Slide 3- 17

� Determine the value of these Boolean expressions, assuming
count is 0 and limit is 10?
� (count == 0) && (limit < 20)

� !(count == 12)

� (limit < 0) && ((limit /count) > 7)

� (limit && count==0)

Overview

Slide 3- 18

� Using Boolean Expressions

� Truth table, evaluate boolean expression

� Precedence

� Multiway Branches

� nested if-else statement

� switch statement

� More about C++ Loop Statements

� Designing Loops

Multiway Branches

Slide 3- 19

� A branching mechanism selects one out of a number of
alternative actions
� An if-else-statement is a two-way branch
� Three or four (or more) way branches: can be designed using

nested if-else-statements
� Where an if-else statement is a part of another if-else statement

� e.g., if (count < 10)
if (x < y)

cout << x << " is less than " << y;
else

cout << y << " is less than " << x;

Slide 3- 20

Nested if-else statements

Slide 3- 21

� Example: To design an if-else statement to warn a driver when
fuel is low, but tells the driver to bypass pit stops if the fuel is
close to full. Otherwise there should be no output.

Pseudocode: if fuel gauge is below ¾ then:
if fuel gauge is below ¼ then:

issue a warning
otherwise (gauge > ¾) then:

output a statement saying don't stop

First Try Nested if's

Slide 3- 22

� Translating the previous pseudocode to C++ could yield

if (fuel_gauge_reading < 0.75)
if (fuel_gauge_reading < 0.25)
cout << "Fuel very low. Caution!\n";

else
cout << "Fuel over 3/4. Don't stop now!\n";

� compile and run, but does not produce desired results
� When fuel_gauge_reading is 0.3, it prints “Fuel over ¾, Don’t stop now!”

� Why?

Dangling else problem

Slide 3- 23

� There is ambiguity in the code below
� There are two if, only one else
� Which if is this “else” for?
This is sometimes called Dangling else problem.

if (fuel_gauge_reading < 0.75)
if (fuel_gauge_reading < 0.25)
cout << "Fuel very low. Caution!\n";

else
cout << "Fuel over 3/4. Don't stop now!\n";

� C++ standard: pairs the "else" with nearest previous "if"

Braces and Nested Statements

Slide 3- 24

� Braces in nested statements are like parenthesis in
expressions
� To pair else with first if: use {} to enclose the if statement.

if (fuel_gauge_reading < 0.75)
{

if (fuel_gauge_reading < 0.25)
cout << "Fuel very low. Caution!\n";

}
else

cout << "Fuel over 3/4. Don't stop now!\n";

Slide 3- 25

Multi-way if-else-statements:
Number Guessing

Slide 3- 26

� number guessing game:

if (guess> number)
cout << "Too high.";

else
if (guess < number)

cout << "Too low.");
else

if (guess == number)
cout << "Correct!";

If there are more nested if statements, indentation levels keep
increasing, less and less space …

Indenting Nested if-else

Slide 3- 27

� Alternative indentation for nested if-else-statements:

if (guess> number)
cout << "Too high.";

else if (guess < number)
cout << "Too low.");

else if (guess == number)
cout << "Correct!";

Final if-else-statement

Slide 3- 28

� When conditions tested in an if-else-statement are mutually
exclusive, final if can sometimes be omitted.

if (guess> number)
cout << "Too high.";

else if (guess < number)
cout << "Too low.");

else // (guess == number), sure guess must be equal to number
cout << "Correct!";

Nested if-else Syntax

Slide 3- 29

if (Boolean_Expression_1)
Statement_1

else if (Boolean_Expression_2)
Statement_2
…

else if (Boolean_Expression_n)
Statement _n

else
Statement_For_All_Other_Possibilities

Review: if statements
� To implement branching, use if statements

if (boolean_expression)
statement1

else
statement2

if (boolean_expression)
statement

Slide 1- 30

• Boolean expression is
enclosed by ()
• statements should be indented by
one more level. It can be
1. simple statement
2. block statement, i.e.,

a sequence statement enclosed
with { }

3. empty statement
4. loop statement
5. if statement, i.e., nested if

statement

Making sense of statements…
� By default language is English. If the country is USA and the

state is PR, then set the language to Spanish. If the country is
China, set the language to Chinese.

string language=″English″;
if (country==″USA″)
if (state==″PR″) language=″Spanish″;
else if (country==″China″)
language=″Chinese″;

Slide 1- 31

First: try to rewrite it using our indentation convention

Exercise
� Write a code segment that assign appropriate value to

variable days_in_month, based on value of variable month

int month,days_in_month;

cin >> month;

//your code here … assuming month takes value between
// 1 and 12, and assuming it’s not leap year

Slide 1- 32

Program Example: State Income Tax

Slide 3- 33

� Write a program for a state that computes tax according to rate
schedule:

No tax on first $15,000 of income

5% tax on each dollar from $15,001 to $25,000

10% tax on each dollar over $25,000

Slide 3- 34

else if (net_income <= 25000)

Overview

Slide 3- 35

� Using Boolean Expressions
� Truth table, evaluate boolean expression
� Precedence

� Multiway Branches using Embedded if-else statement

� Coding Style and Errors
� Multiway Branches using switch statement

� C++ Loop Statements: while, do/while loop,

� C++ Loop Statements: for loop

� Designing Loops

Program Style

36

� A program written with attention to style
� is easier to read
� easier to correct
� easier to change

� Indentations, Comments, Named Constants

Program Style - Indenting

37

� Items considered a group should look like a group
� Skip lines between logical groups of statements
� Indent statements within statements

if (x = = 0)
statement;

� Braces {} create groups
� Indent within braces to make the group clear
� Braces placed on separate lines are easier to locate

Program Style - Comments

38

� // is the symbol for a single line comment
� Comments are explanatory notes for the programmer
� All text on the line following // is ignored by the

compiler
� Example: //calculate regular wages

gross_pay = rate * hours;
� /* and */ enclose multiple line comments

� Example: /* This is a comment that spans
multiple lines without a
comment symbol on the middle line

*/

Program Style - Constants

39

� Number constants have no mnemonic value
� Number constants used throughout a program

are difficult to find and change when needed

� Constants
� Allow us to name number constants so they have

meaning
� Allow us to change all occurrences simply by

changing the value of the constant

Constants

40

� const is the keyword to declare a constant
� Example:

const int WINDOW_COUNT = 10;
declares a constant named WINDOW_COUNT

� Its value cannot be changed by program like a variable
� It is common to name constants with all capitals

� Create a named constant of type double with its value being
3.1415?

Overview

Slide 3- 41

� Using Boolean Expressions
� Truth table, evaluate boolean expression
� Precedence

� Multiway Branches using Embedded if-else statement

� Coding Style and Errors
� Multiway Branches using switch statement

� C++ Loop Statements: while, do/while loop,

� C++ Loop Statements: for loop

� Designing Loops

switch-statement

Slide 3- 42

� switch-statement: for constructing multi-way branches
switch (controlling expression)
{

case constant_1:
statement_Sequence_1
break;

case constant_2:
statement_Sequence_2
break;

. . .
case constant_n:

statement_Sequence_n
break;

default:
default_Statement_Sequence

}

Slide 3- 43

Understanding switch statement

Slide 3- 44

� A switch statement's controlling
expression must be one of these
types: bool, int, long, char

� Control expression’s value is first
evaluated, and then compared to
constant values after each "case"
� When a match is found, the code for

that case is executed

switch (controlling expression)
{

case constant_1:
statement_Sequence_1
break;

case constant_2:
statement_Sequence_2
break;

. . .
case constant_n:

statement_Sequence_n
break;

default:
default_Statement_Sequence

}

Understand switch statement
(cont’d)

Slide 3- 45

� break statement: “break out” of switch statement, i.e., go to next
statement after the switch

� Usually: we use a break at the end of the statement sequence for
each case

� Omitting break statement will cause the code for the next case to
be executed!
� Cascading effect, or falling-through …

� This allows us to use multiple case labels for a section of code
� case 'A':

case 'a':
cout << "Excellent.";

break;

� Runs the same code for either 'A' or 'a'

default case

Slide 3- 46

� If no case label has a constant that matches controlling
expression, statements following default label are executed
� If there is no default label, nothing happens when the switch

statement is executed

� It is a good idea to include a default section

Nested if/else vs switch

Slide 3- 47

� Nested if-else statements are more versatile than
a switch statement
• Question: can switch statement be used to computes tax

according to rate schedule:
No tax on first $15,000 of income
5% tax on each dollar from $15,001 to $25,000
10% tax on each dollar over $25,000

� Switch-statements can make some code more
clear
� A menu is a natural application for a switch-statement

switch statement exercise

Slide 3- 48

� Can we use switch statement to rewrite the expression.cpp?
� What is used to control/select which branch to execute?

� Can we use switch statement to set the days_in_month based
upon month? (i.e., if month is 1,3,5,7,8,10,12,
days_in_month is set to 31, …)?
� Would you choose nested if/else or switch?

Overview

Slide 3- 49

� Using Boolean Expressions
� Truth table, evaluate boolean expression
� Precedence

� Multiway Branches using Embedded if-else statement

� Multiway Branches using switch statement

� Coding Style and Errors
� C++ Loop Statements: while, do/while loop,

� C++ Loop Statements: for loop

� Designing Loops

Loop statement to repeat an action

50

� To repeat an action, we use a loop
� For example, to output ”Hello” for ten times, we can:

e.g.,
int count=10;
while (count> 0)
{

cout << "Hello ";
count -= 1;

}
Output: Hello Hello Hello Hello Hello …. Hello

51

While Loop Operation

52

� First, boolean expression is evaluated
� If false, program skips to line following

while loop
� If true, body of loop is executed

� During execution, some item from boolean
expression is changed

� After executing loop body, boolean
expression is checked again: repeating
process until expression becomes false

� A while loop might not execute at all if
boolean expression is false on the first
check

count_down = 3;
while (count_down > 0)
{

cout << "Hello ";
count_down -= 1;

}

Statement follows while
loop

Boolean expression

The body of loop

53

Exercise

54

� Can you write a program that prints numbers
1,2,3…,100 to the terminal?

� Write a program that
� Ask the user to enter an integer
� Calculate the sum of all numbers from 1 to this number
� Output the result

� Write some code segment to keep reading from cin the
number of 12 inch pizza until the user enter a non-
negative number.

do-while loop

55

� A do-while loop is always executed at least once
� body of the loop is first executed
� boolean expression is checked after the body

has been executed
� Syntax:

do
{

statements to repeat
} while (boolean_expression);

56

Slid
e 2-
57

Sample Program

58

� Bank charge card balance of $50
� 2% per month interest

� How many months without payments before
your balance exceeds $100

� After 1 month: $50 + 2% of $50 = $51

� After 2 months: $51 + 2% of $51 = $52.02
� After 3 months: $52.02 + 2% of $52.02 …

59

Infinite Loops

60

� infinite loops: loops that never stop are
� loop body should contain a line that will eventually cause

boolean expression to become false

� e.g.,: print odd numbers less than 12
x = 1;
while (x != 12)
{

cout << x << endl;
x = x + 2;

}
� Better to use this comparison: while (x < 12)

Exercises

61

• Can you show the output of this code if x is of type int?
x = 10;

while (x > 0)
{

cout << x << endl;
x = x – 3;

}

– Show the output of the previous code using the
comparison x < 0 instead of x > 0?

C++ Loop Statements

Slide 3- 62

� A loop is a program construction that repeats a statement or
sequence of statements a number of times
� The body of the loop is the statement(s) repeated
� Each repetition of the loop is an iteration

� Loop design questions:
� What should loop body be?
� How many times should the body be iterated?

Slide 3- 63

� A while loop checks the Boolean
expression at the beginning of the
loop
� A while loop might never be executed!

� A do-while loop checks the Boolean
expression at the end of the loop
� A do-while loop is always executed at

least once

Review: while and
do-while

What’s the problem with the code?
� Prompt the user to enter the month, check if the input is

valid (whether the value is between 1 and 12). Repeat it until
the input is valid.

cout << “Enter the month::”;

int month;

cin >> month;

while (month >12 || month <1);

cout <<“Invalid input. Try again:”;

cin >> month;

Slide 1- 64

Overview

Slide 3- 65

� Using Boolean Expressions
� Truth table, evaluate boolean expression
� Precedence

� Multiway Branches using Embedded if-else statement

� Multiway Branches using switch statement

� Coding Style and Errors
� C++ Loop Statements: while, do/while loop,

� for loop

� C++ Loop Statements: for loop

� Designing Loops

For loop

Slide 3- 66

� For loop: more compact form
� Normally used to write a loop with known iteration numbers

� for loop to add the numbers 1 - 10
sum = 0;
for (n = 1; n <= 10; n++)
sum = sum + n;

� while loop for same task
sum = 0;
n = 1;
while (n <= 10)
{

sum = sum + n;
n++;

}

For Loop Dissection

Slide 3- 67

� for (n = 1; n <= 10; n++)
sum = sum + n;

Initialization Action

Boolean

Expression

Update Action

Loop body

1. initialize n with value1
2. Continue to iterate the body as long as n <= 10
3. Increment n by one after each iteration

For loop => while loop

Slide 3- 68

sum = 0;
for (n = 1; n <= 10; n++)

sum = sum + n;

sum = 0;
n = 1;
while (n <= 10)
{

sum = sum + n;
n++;

}

for Loop Alternative

Slide 3- 69

� A for loop can also include a variable declaration in initialization
action
� for (int n = 1; n < = 10; n++)

This line means
� Create a variable, n, of type int and initialize it with 1
� Continue to iterate the body as long as n <= 10
� Increment n by one after each iteration

Slide 3- 70

for-loop Details

Slide 3- 71

� Initialization and update actions of for-loops often contain more
complex expressions

for (n = 1; n < = 10; n = n + 2)

for(n = 0 ; n > -100 ; n = n -7)

for(double x = pow(y,3.0); x > 2.0; x = sqrt(x))

Slide 3- 72

Exercise: how many Hello?

Slide 3- 73

for(int count = 1; count <= 10; count++);
cout << "Hello\n";

� prints one "Hello", but not as part of the loop!
� The empty statement is the body of the loop
� cout << "Hello\n"; is not part of the loop body!

Break statement

Slide 3- 74

� There are times to exit a loop before it ends
� If loop checks for invalid input that would ruin a calculation, it

is often best to end the loop
� Break statement can be used to exit a loop before normal

termination
� In nested loops, break only exits loop in which break-

statement occurs

Slide 3- 75

Slide 3- 76

� The body of a loop may contain any
kind of statement, including
another loop, if statement

� When loops are nested, all
iterations of inner loop
are executed for each iteration of the
outer loop

Nested Loops

Exercise

Slide 3- 77

� Determine the output of the following?
for(int count = 1; count < 5; count++)

cout << (2 * count) << " " ;

� Write a for loop to calculate the sum 1/2 + 1/3 + 1/4 +
… + 1/10

Overview

Slide 3- 78

� Using Boolean Expressions
� Truth table, evaluate boolean expression
� Precedence

� Multiway Branches using Embedded if-else statement

� Multiway Branches using switch statement

� Coding Style and Errors
� C++ Loop Statements: while, do/while loop,

� for loop

� C++ Loop Statements: for loop

� Designing Loops

Overview

Slide 3- 79

� Using Boolean Expressions
� Truth table, evaluate boolean expression
� Precedence

� Multiway Branches using Embedded if-else statement

� Multiway Branches using switch statement

� Coding Style and Errors
� C++ Loop Statements: while, do/while loop,

� for loop

� C++ Loop Statements: for loop

� Designing Loops

Designing Loops

Slide 3- 80

� Designing a loop involves designing
� The body of the loop
� The initializing statements
� The conditions for ending the loop

Which Loop To Use?

Slide 3- 81

� Choose the type of loop late in the design process
� First design the loop using pseudocode

� Translate pseudocode into C++
� for-loops: when doing numeric calculations, especially when using a

variable changed by equal amounts each time the loop iterates
� While-loops:

� When a for-loop is not appropriate
� When there are circumstances for which loop body should not be executed at

all

� Do-while loops:
� When a for-loop is not appropriate
� When the loop body must be executed at least once

Sums and Products

Slide 3- 82

� A common task is reading a list of numbers and computing the
sum

� Pseudocode for this task might be:
sum = 0;

repeat the following this_many times
cin >> next;
sum = sum + next;

end of loop

Pseudocode containing the line
repeat the following "this many times"

is often implemented with a for-loop

for-loop for a sum

Slide 3- 83

int sum = 0;
for(int count=1; count <= this_many; count++)

{
cin >> next;
sum = sum + next;

}

� A for-loop is generally the choice when there is
a predetermined number of iterations

� sum must be initialized prior to the loop body!

for-loop For a Product

Slide 3- 84

� Forming a product is very similar to the sum example seen earlier

int product = 1;
for(int count=1; count <= this_many; count++)
{
cin >> next;
product = product * next;
}

� product must be initialized prior to the loop body
� Notice that product is initialized to 1, not 0!

Ending a read input Loop

Slide 3- 85

� Four common methods to terminate a loop that reads inputs from
keyboard
� List headed by size

� When we can determine the size of the list beforehand

� Ask before iterating
� Ask if the user wants to continue before each iteration

� List ended with a sentinel value
� Using a particular value to signal the end of the list

� Running out of input
� Using the eof function to indicate the end of a file

List Headed By Size

Slide 3- 86

� The for-loops we have seen provide a natural implementation of the list
headed by size method of ending a loop

int items;
cout << "How many items in the list?";
cin >> items;

for(int count = 1; count <= items; count++)
{

int number;
cout << "Enter number " << count;
cin >> number;
cout << endl;
// statements to process the number

}

Ask Before Iterating

Slide 3- 87

� A while loop is used here to implement the ask before iterating method
to end a loop

sum = 0;
cout << "Are there numbers in the list (Y/N)?";
char ans;
cin >> ans;

while ((ans = 'Y') || (ans = 'y'))
{

//statements to read and process the number
cout << "Are there more numbers(Y/N)? ";
cin >> ans;

}

List Ended With a Sentinel Value

Slide 3- 88

� A while loop is typically used to end a loop using the list ended
with a sentinel value method

cout << "Enter a list of nonnegative integers.\n"
<< "Place a negative integer after the list.\n";

sum = 0;
cin >> number;
while (number > 0)
{

//statements to process the number
cin >> number;

}

� Notice that the sentinel value is read, but not processed

Running Out of Input

Slide 3- 89

� while loop is typically used to implement running out of input
method of ending a loop

ifstream infile;
infile.open("data.dat");
while (! infile.eof())
{
// read and process items from the file

// File I/O covered in Chapter 6
}

infile.close();

General Methods To Control Loops

Slide 3- 90

� Counter controlled loops: the number of iterations
predetermined before loop begins
� E.g., list headed by size

� Ask before iterating
� Exit on flag condition: loops ended when a particular flag

condition exists
� A variable that changes value to indicate that some event has

taken place is a flag
� E.g., List ended with a sentinel value, running out of input

Exit on Flag Caution

Slide 3- 91

� Consider this loop to identify a student with a grade of 90 or
better

int n = 1;
grade = compute_grade(n);

while (grade < 90)
{

n++;
grade = compute_grade(n);

}
cout << "Student number " << n

<< " has a score of " << grade << endl;

What if no student has a grade of 90 or higher?

Exit On Flag Solution

Slide 3- 92

� This code solves the problem of having no student grade at 90 or
higher

int n=1;
grade = compute_grade(n);
while ((grade < 90) && (n < number_of_students))
{

// same as before
}
if (grade > 90)

// same output as before
else

cout << "No student has a high score.";

a second flag: ensure there are still students to consider

Debugging Loops

Slide 3- 93

� Off-by-one errors: loop executes one too many or one too
few times
� Check your comparison:

should it be < or <=?
� Check that the initialization uses the correct value
� Does the loop handle the zero iterations case?

� Infinite loops: usually result from a mistake in Boolean
expression that controls the loop
� Check direction of inequalities:

< or > ?
� Test for < or > rather than equality (==)

� Remember that doubles are really only approximations

Loop Debugging Tips

Slide 3- 94

� Be sure that the mistake is really in the loop
� Trace variable to observe how the variable changes

� Tracing a variable is watching its value change during execution
� Many systems include utilities to help with this

� cout statements can be used to trace a value

Debugging Example

Slide 3- 95

� following code is supposed to conclude with variable product
containing the product of the numbers 2 through 5, i.e.,

2*3*4*5

int next = 2, product = 1;
while (next < 5)
{

next++;
product = product * next;

}

Tracing Variables

Slide 3- 96

� Add temporary cout statements to trace variables

int next = 2, product = 1;
while (next < 5)
{

next++;
product = product * next;
cout << "next = " << next

<< "product = " << product
<< endl;

}
next=3 product=3
next=4 product=12
next=5 product=60

Problem: 2 is not multiplied into product…

First Fix

Slide 3- 97

� Solve the problem by moving the statement next++

int next = 2, product = 1;
while (next < 5)
{

product = product * next;
next++;

cout << "next = " << next
<< "product = " << product
<< endl;

}

� There is still a problem!

Second Fix

Slide 3- 98

� New problem: loop never multiplies by 5
� The fix is to use <= instead of < in our comparison

int next = 2, product = 1;
while (next <= 5)
{

product = product * next;
next++;

}

Loop Testing Guidelines

Slide 3- 99

� Every time a program is changed, it must be retested
� Changing one part may require a change to another

� Every loop should at least be tested using input to cause:
� Zero iterations of the loop body
� One iteration of the loop body
� One less than the maximum number of iterations
� The maximum number of iterations

Starting Over

Slide 3- 100

� Sometimes it is more efficient to throw out a
buggy program and start over
� The new program will be easier to read
� The new program is less likely to be as buggy
� You may develop a working program faster than if you repair

the bad code
� The lessons learned in the buggy code will help you

design a better program faster

Summary

Slide 3- 101

� Using Boolean Expressions

� Truth table, evaluate boolean expression

� Precedence Rules

� Multiway Branches

� Nested if-else statement

� Switch statement

� More about C++ Loop Statements

� Designing Loops

