
Procedural Abstraction and Functions That Return a
Value

Chapter 4

Overview

Slide 4- 2

� Predefined Functions
� Programmer-Defined Functions
�Local Variables
�Overloading Function Names

� Top-Down Design and Procedural Abstraction

C++ Functions
� Function: a packaged segment of code (i.e., has a name) that

implement a well-defined functionality, e.g.,
� To calculate square root of a double value, named sqrt
� To read from keyboard the number of items to order, named

GetItemNum,
� To calculate area of a circle with a given radius

� Blackbox analogy: a function takes some input and produces
some output
� Input: the value to calculate square root of, the item’s name,

radius
� Output: the result of calculation, or user’s input (as in

GetItemNum)
� Input provided as parameters, output as return value … Slide 1- 3

Program structure
� Function declaration, function definition, function call

� Syntax, formal parameters, actual arguments
� Function must be declared before being called

int GetItemNumber (string itemName);

int main()

{

GetItemNumber (“14-inch pizza”);

}

int GetItemNumber (string itemName)

{

int value;

cout <<“Enter the number of item “ << itemName <<“:”;

cin >> value;

return value;

} Slide 1- 4

function call

function declaration

function definition

formal parameters

actual arguments

function call
� You can call a function from main, from any function (including the

function itself, i.e., recursive function)
� value = sqrt (9.0)+12.0;
� area = AreaCircle (12.00);
� cout << ”Area of a circle with diameter “<< diameter

<< “ is “ <<AreaCircle (diameter/2.0);
� Note: if you declare and define a function, but do not call the function from

main(), the function will not be executed

Slide 1- 5

function call
� Parameter passing (pass-by-value): the values of arguments are

assigned to parameters based on order
� Normally, arguments can be expressions, variables, or constants
� Type of arguments should match with corresponding parameters (recall they will

be assigned to the parameters)

� Return from function:
� When reach return statement, or end of function body
� Go back to caller function, to the statement where function is called

Slide 1- 6

Predefined Functions

Slide 4- 7

� C++ comes with libraries of predefined functions
� Example: sqrt function that returns, or computes, square

root of a number
� the_root = sqrt(9.0);

� the number, 9, is called the argument
� the_root will contain 3.0

� sqrt(9.0) is a function call
� It invokes, or sets in action, the sqrt function
� argument (here it is 9), can also be a variable or an expression
� A function call can be used like any expression

� bonus = sqrt(sales) / 10;
� Cout << “The side of a square with area “ << area

<< “ is “
<< sqrt(area);

Slide 4- 8

Function Call Syntax

Slide 4- 9

� Function_name (Argument_List)
� Argument_List is a comma separated list:

(Argument_1, Argument_2, … , Argument_Last)
� Example:

� side = sqrt(area);
� cout << “2.5 to the power 3.0 is “

<< pow(2.5, 3.0);

Function Libraries

Slide 4- 10

� Predefined functions are found in libraries
� The library must be “included” in a program to make the

functions available

� An include directive tells the compiler which library header file
to include.

� To include the math library containing sqrt():

#include <cmath>

� Newer standard libraries, such as cmath, also require directive
using namespace std;

Other Predefined Functions

Slide 4- 11

� abs(x) --- int value = abs(-8);
� Returns absolute value of argument x
� Return value is of type int
� Argument is of type x
� Found in the library cstdlib

� fabs(x) --- double value = fabs(-8.0);
� Returns the absolute value of argument x
� Return value is of type double
� Argument is of type double
� Found in the library cmath

Slide 4- 12

Random Number Generation

Slide 1- 13

� Really pseudo-random numbers
� 1. Seed the random number generator only once

#include <cstdlib>

#include <ctime>

srand(time(0));

� 2. rand() function returns a random integer that is greater than or
equal to 0 and less than RAND_MAX

rand();

Random Numbers

Slide 1- 14

� Use % and + to scale to the number range you want

� For example to get a random number from 1-6 to simulate
rolling a six-sided die:

int die = (rand() % 6) + 1;

� Can you simulate rolling two dice?
� Generating a random number x where 10 < x < 21?

Type Casting

Slide 4- 15

� Recall the problem with integer division:
int total_candy = 9, number_of_people = 4;
double candy_per_person;
candy_per_person = total_candy / number_of_people;
� candy_per_person = 2, not 2.25!

� A Type Cast produces a value of one type from another type
� static_cast<double>(total_candy) produces a double

representing integer value of total_candy

Type Cast Example

Slide 4- 16

� int total_candy = 9, number_of_people = 4;
double candy_per_person;
candy_per_person = static_cast<double>(total_candy)

/ number_of_people;
� candy_per_person now is 2.25!

� This would also work:
candy_per_person = total_candy /

static_cast<double>(number_of_people);

� This would not!
candy_per_person = static_cast<double>(total_candy /

number_of_people);

Integer division occurs before type cast

Old Style Type Cast

Slide 4- 17

� C++ is an evolving language

� This older method of type casting may be discontinued in
future versions of C++

candy_per_person = double(total_candy)/number_of_people;

Exercises

Slide 4- 18

yx +

� Determine the value of d?

double d = 11 / 2;

� Determine the value of
pow(2,3) fabs(-3.5) sqrt(pow(3,2))
7 / abs(-2) ceil(5.8) floor(5.8)

� Convert the following to C++

a
acbb

2
42 -+-

Overview

Slide 4- 19

� Predefined Functions
� Programmer-Defined Functions
�Local Variables
�Overloading Function Names

� Top-Down Design and Procedural Abstraction

Programmer-Defined Functions

Slide 4- 20

� Two components of a function definition
� Function declaration (or function prototype)

� Shows how the function is called
� Must appear in the code before the function can be called
� Syntax:

Type_returned Function_Name(Parameter_List);
//Comment describing what function does

� Function definition
� Describes how the function does its task
� Can appear before or after the function is called
� Syntax:

Type_returned Function_Name(Parameter_List)
{

//code to make the function work
}

;

Function Declaration

Slide 4- 21

� Example:
double total_cost(int number_par, double price_par);
// Compute total cost including 5% sales tax on
// number_par items at cost of price_par each

� Tell compiler about total_cost function:
� the return type
� the name of the function
� how many arguments are needed
� the types of the arguments
� the formal parameter names

� Formal parameters are like placeholders for the actual
arguments used when the function is called

� Formal parameter names can be any valid identifier

Alternate Declarations

Slide 4- 22

� Two forms of function declaration:
double total_cost(int number_par, double price_par);
// List formal parameter names
// Compute total cost including 5% sales tax on
// number_par items at cost of price_par each

double total_cost(int, double);
//List types of formal parmeters, but not names
// The first parameter is number of items, and the second is the unit price
//Compute total cost including 5% sales tax on the specified number of
// items at given unit price

� First aids description of the function in comments
� Function headers must always list formal parameter names!

Placing Definitions

Slide 4- 23

� A function call must be preceded by either
� The function’s declaration, see example code

or
� The function’s definition, see example code

� If the function’s definition precedes the call, a declaration is not needed

� Placing the function declaration prior to main function and
the function definition after the main function leads naturally
to building your own libraries in the future.

https://storm.cis.fordham.edu/zhang/cs1600/CodeExample_Savitch/Chapter04/04-10.cpp
https://storm.cis.fordham.edu/zhang/cs1600/CodeExample_Savitch/Chapter04/04-03.cpp

Function Definition

Slide 4- 24

� Function header: Provides the same information as the declaration
� Function body: Describes how the function does its task
� Example:

double total_cost(int number_par, double price_par)
{

const double TAX_RATE = 0.05; //5% tax
double subtotal;
subtotal = price_par * number_par;
return (subtotal + subtotal * TAX_RATE);

}

� Within a function definition
� Variables must be declared before they are used

� Variables are typically declared before the executable statements begin

� At least one return statement must end the function
� Each branch of an if-else statement might have its own return statement

function header

function body

Slide 4- 25

Return Statement

Slide 4- 26

� Ends the function call
� Returns the value calculated by the function

� Syntax:
return expression;

� expression performs the calculation or a variable containing the
calculated value

� Example:

area=PI*radius*radius;

return area;

or
return PI*radius*radius;

Overview

Slide 4- 27

� Predefined Functions
� Programmer-Defined Functions
�Local Variables
�Overloading Function Names

� Top-Down Design and Procedural Abstraction

Local Variables

Slide 4- 28

� Variables declared in a function:
� Are local to that function, they cannot be used from outside

function
� Have the function as their scope

� Variables declared in the main function of a program:
� Are local to the main function, they cannot be used from

outside main function
� Have the main part as their scope

Formal Parameters
are Local Variables

Slide 4- 29

� Formal Parameters are actually variables that are local to the
function definition
� They are used just as if they were declared in function body
� Do NOT re-declare formal parameters in function body, they

are declared in the function declaration
� call-by-value mechanism

� When a function is called, formal parameters are initialized to
values of the arguments in the function call

Slide 4- 30

Slide 4- 31

Global Variables

Slide 4- 32

� Global Variable -- used when more than one function must
use a common variable
� Available to more than one function as well as main part of the

program
� Declared outside any function body
� Declared outside the main function body
� Declared before any function that uses it

� Generally make programs more difficult to understand and
maintain

Global Constants

Slide 4- 33

� Global Named Constant
� A global variable that is constant

� Example:
const double PI = 3.14159;
double volume(double);

int main()
{
…
}
…

� PI is available to the main function and to function volume

Slide 4- 34

demo_pi.cpp

Slide 4- 35

Slide 4- 36

Block Scope

Slide 1- 37

� A block, or block statement, or code block: C++
code/statements enclosed in braces
� Global block: the outermost block that encompasses all code in

a program
� Blocks can be nested: function block within global block, a for

loop block within a function block, …

� Block scope rule: identifier (variable) declared within a
block is local to the block, i.e., only accessible from point of
declaration to end of block
� Ex: local and global variables

Slide 4- 38

Exercises
� Which of the following statements about variables is true?

1. The same variable name can be used in two different
functions.

2. The same variable name cannot be used for two different
variables in a single function.

3. You should use global variables whenever possible.
4. A variable is visible from the point at which it is defined until

the end of the program.

Slide 1- 39

Exercises
� Which of the following is correct about a global variable?

1. It is declared before all the functions in a program.
2. It is visible to all the functions declared after it.
3. It is declared in the main function.
4. It is declared within the scope of a function.

Slide 1- 40

Brush up your emacs skill
How to cut and paste?

Slide 1- 41

Emacs keystroke notations
� Ctrl key: C- prefix to denote holding down Ctrl while pressing

another key.
� holding down Ctrl and pressing x is denoted as C-x

� Meta key: M- prefix, pressing Esc once and releasing it
� M-x, press Esc and release it, then press x

� M-C- prefix: press and release Esc, then hold down Ctrl while
pressing the final key in command.

� Examples
� C-x C-c: Press and hold Ctrl, then press x , followed by c .
� M-x shell: Press and release Esc, then press x . Then type shell and

press Enter.
� M-C-p: Press and release Esc, then press and hold Ctrl and press p .

Slide 1- 42

undo
� Undo: reverses recent changes (not yet saved to file)

� You can undo all the changes one at a time

� Keystrokes for undo
� C-/: press ctrl and / together
� C-x u: press ctrl and x together, and then u
� C-_: press ctrl and space together

Slide 1- 43

Other emacs commands

Slide 1- 44

How to cut/copy/ paste ?
� First select part of texts that you want to cut or copy

� First set a mark at one end, then move cursor to other end.
� To set mark, press C-SPC or C-@

� Region is all of the text from mark to cursor.

� Then cut or copy
� To cut selected text, press C-w (Ctrl-w)
� To copy selected text, press M-w (Press Esc, release it, and

then press w)

� To paste text that has just been cut/copied
� press C-y (Ctrl-y)

Slide 1- 45

Overview

Slide 4- 46

� Predefined Functions
� Programmer-Defined Functions
�Local Variables
�Function call: how to trace?
�Overloading Function Names

� Top-Down Design and Procedural Abstraction

Recall handtracing
� Purpose: identify logic errors, understand others’ code,

verify your code/design
� What you needs:

� The program
� Paper and pencil

� Keys:
� Arrows: pointing to current statement
� A variable table: keeping track of variable values
� Input region: what have been entered by user in keyboard,

what have been read by the program?
� Output region: keeping track of information displayed in

terminal (standard output)
47

Tracing Function Call

Slide 4- 48

� Create a new variable table for function’s local variables
� Include formal parameters, those listed inside (…)

� Parameter Passing: assign values of arguments to formal
parameters based on order (not by names…)
� first argument assigned to first formal parameter
� second argument for second formal parameter, and so forth
� So called “pass-by-value” parameters

� Start to execute function body from first statement, until a
return statement, or } (end of function)

� Value returned to the caller, and resume execution in caller
function (at the point where function is called)

Slide 4- 49

Example: Factorial

Slide 4- 50

� n! Represents the factorial function
n! = 1 x 2 x 3 x … x n

� C++ version of the factorial function
� Requires one argument of type int, n
� Returns a value of type int

� Algorithm
� Uses a local variable to store current product
� Decrements n each time it does another

multiplication
n * n-1 * n-2 * … * 1

Slide 4- 51

int main ()

{

int k;

cout << "Enter a natural number:";

cin >> k;

int result = factorial (k);

cout <<"factorial of " << k << "="

<< result << endl;

}

int factorial(int k)

{

int product = 1;

while (k > 0)

{

product = k * product;

k--;

}

return product;

}

Factorial.cpp

Slide 1- 52

k

result

main() local variables

Input/Output:

k

product

factorial(k) local variables

Enter a natural number: 4

Trace with help of computer
� Add cout statements to trace the execution of program

� Before and after each chunk of code
� before and after loop
� Before and after function calls
� Inside function call: entry point and exit point

� To make sure parameters have been passed correctly

� Anywhere you suspect something has gone wrong:
� Binary search to identify where errors occur

Example: fact_trace.cpp

� You can also add some “break points”:
� Example: fact_trace2.cpp

� Tools: gdb or IDE to trace your program
Slide 1- 53

Order of Arguments

Slide 4- 54

� Compiler checks that types of arguments are correct and in the
correct sequence.

� Compiler cannot check that arguments are in the correct logical
order

� Example: Given the function declaration:
char grade(int received_par, int min_score_par);

int received = 95, min_score = 60;

cout << grade(min_score, received);

� Produces a faulty result because the arguments are not in
the correct logical order. The compiler will not catch this!

Slide 4- 55

grade.cpp

Although formal
parameter names
only matters in terms of style
(like indentation), good names
prevent such mistakes.

Imagine this and no comment:

char grade (int a, int b);

Automatic Type Conversion

Slide 4- 56

� Given the definition
double mpg(double miles, double gallons)
{

return (miles / gallons);
}

what will happen if mpg is called in this way?

cout << mpg(45, 2) << “ miles per gallon”;

� values of arguments will automatically be converted to type
double (45.0 and 2.0)

bool Return Values

Slide 3- 57

� A function can return a bool value
� Such a function can be used where a boolean expression is

expected
if (((rate >=10) && (rate < 20)) || (rate == 0))

…

if (appropriate (rate))

…

bool appropriate(int rate)
{
return (((rate >=10) && (rate < 20)) || (rate == 0));

}

Example

Slide 4- 58

� Write a function for testing leap year, it takes the year as
parameter, and return true if the year is leap year; and return
false otherwise.
� Start with declaration, comment (a kind of contract,

requirement analysis: what does this function do?)
� Then move on to definition (i.e., actual implementation: how

does the function achieve it?)

Example

Slide 4- 59

� Write a function that returns the number of days in a month.
� Function declaration:

� What parameter(s) (i.e., input) the function needs?
� What output the function generates (i.e., return value)?

� Function definition:

Overview

Slide 4- 60

� Predefined Functions
� Programmer-Defined Functions
�Local Variables
�Function call: how to trace?
�Overloading Function Names

� Top-Down Design and Procedural Abstraction

Overloading Function Names

Slide 4- 61

� C++ allows more than one definition for same function name
� Very convenient for situations in which “same” function is

needed for different numbers or types of arguments
� E.g., average of integers, average of doubles
� E.g., area of circle, area of rectangle, …

� Overloading a function name: more than one declaration and
definition using same function name

Overloading Examples

Slide 4- 62

� double ave(double n1, double n2)
{

return ((n1 + n2) / 2);
}

� double ave(double n1, double n2, double n3)
{

return ((n1 + n2 + n3) / 3);
}

� Compiler checks number and types of arguments
in function call to decide which function to use

cout << ave(10, 20, 30);

uses the second definition

Overloading Details

Slide 4- 63

� Overloaded functions
� Must return a value of the same type
� Must have different numbers of formal parameters, or at least

one parameter is of different type

� Example: overload_test.cpp

Slide 4- 64

overload_ex.cpp

Function
overloading
mpg.cpp

Slide 4- 65

double mpg(double miles, double gallons) //return miles per gallon
{

return (miles / gallons);
}

int mpg(int goals, int misses)
// returns the Measure of Perfect Goals
{

return (goals – misses);
}

what happens if mpg is called as follows?

cout << mpg(45, 2) << “ miles per gallon”;

� Compiler chooses function that matches parameter types so Measure of Perfect
Goals will be calculated

Do not use the same function name for unrelated functions

Overview

Slide 4- 66

� Predefined Functions
� Programmer-Defined Functions
�Local Variables
�Function call: how to trace?
�Overloading Function Names

� Why functions?
�Procedural Abstraction
�How does it help with problem solving, i.e., Top-Down

Design

Without functions
� If there is no function

� We need to use C++ statements to write codes to calculate
square root, exponentials, logarithm, write to a disk file, write
to terminal

� Everything will be located in a super long main()
� We have to copy code around, as we might need to calculate

square root in multiple locations in the code

� Hard to re-use code:
� if a friend of yours implemented calculating square root, you

have to copy/embed his/her code in your main, making sure
there is no name conlision

� Code: hard to read, understand, maintain !
Slide 1- 67

Function to rescure
� We “package” codes that implement a well-defined

functionalities into a “function”
� For example, code to calculate square root
� To read an order of an item

� We then call the function from multiple places
� GetItemNumber (“12-inch pizza”);
� GetItemNumber (“14-inch pizza);

� Share it with others, therefore we have iostream, cmath
library which are a collection of function definitions
#include <cmath> //add math function declarations into your

program, so you can call them…

� Change function’s implementation without affect callers
Slide 1- 68

Procedural Abstraction

Slide 4- 69

� Black Box: refers to something that we know how to use
(inputs, buttons, menus and output), but the method of
operation is unknown
� A person using a program does not need to know how it is

coded, but he know what the function does
� E.g., you know brake is for slowing down, but do not know

how it works …
� Functions and Black Box Analogy

� A programmer who uses a function needs to know
what the function does, not how it does it
� Only function header, and comment (Header: specify input and output of

the function)
� E.g., you do not know how sqrt() is implemented …

Procedural Abstraction and C++

Slide 4- 70

� Procedural Abstraction is writing and using functions as if they
were black boxes
� Procedure is a general term meaning a “function like”

set of instructions
� Abstraction: when you use a function as a black box, you

abstract away details of code in the function body

Guideline for function design

Slide 4- 71

� Each function does one well-defined thing
� Do not do multiple things in one function, e.g., read item number and

calculate the cost …
� And possibly needed for future
� One-liner, 2-liners are not well suited for function

� In general, return the result, instead of cout the result
� Let the caller function decides what to do with

� Information hiding: function can be used without knowing
how it is coded (function body can be “hidden from view”),
declaration and comment is all a programmer needs to know

� comment should tell all conditions required of parameters to
function, and choose meaningful names for formal parameters,

� Comment should describe the returned value

Overview

Slide 4- 72

� Predefined Functions
� Programmer-Defined Functions
�Local Variables
�Function call: how to trace?
�Overloading Function Names

� Why functions?
�Procedural Abstraction
�How does it help with problem solving, i.e., Top-Down

Design

Top Down Design

Slide 4- 73

� To write a program
� Develop algorithm that program will use
� Translate algorithm into programming language

� Top Down Design (also called stepwise refinement)
� Break the algorithm into subtasks
� Break each subtask into smaller subtasks
� Eventually smaller subtasks are trivial to implement in

programming language
� Very often, subtasks are implemented as functions

Function Implementations
and The Black Box

Slide 4- 74

� Designing with the black box in mind allows us
� To change or improve a function definition without

forcing programmers using the function to change
what they have done

� To know how to use a function simply by reading the
function declaration and its comment

Benefits of Top Down Design

Slide 4- 75

� Subtasks, or functions in C++, make programs easier to
� Write: as you can focus on a simpler function, blocking out

other tasks
� Test and debug: because of simplicity of each function,
� Understand
� Change
� Teamwork

Case Study Buying Pizza

Slide 4- 76

� What size pizza is the best buy?
� Which size gives the lowest cost per square inch?
� Pizza sizes given in diameter
� Quantity of pizza is based on the area which

is proportional to the square of the radius

Buying Pizza Problem Definition

Slide 4- 77

� Input:
� Diameter of two sizes of pizza
� Cost of the same two sizes of pizza

� Output:
� Cost per square inch for each size of pizza
� Which size is the best buy

� Based on lowest price per square inch
� If cost per square inch is the same, the smaller size

will be the better buy

Buying Pizza Problem Analysis

Slide 4- 78

� Subtask 1
� Get the input data for each size of pizza

� Subtask 2
� Compute price per inch for smaller pizza

� Subtask 3
� Compute price per inch for larger pizza

� Subtask 4
� Determine which size is the better buy

� Subtask 5
� Output the results

Buying Pizza Function Analysis

Slide 4- 79

� Subtask 2 and subtask 3 should be implemented
as a single function because
� Subtask 2 and subtask 3 are identical tasks

� The calculation for subtask 3 is the same as the
calculation for subtask 2 with different arguments

� Subtask 2 and subtask 3 each return a single
value

� Choose an appropriate name for the function
� We’ll use unitprice

Buying Pizza unitprice Declaration

Slide 4- 80

� double unitprice(int diameter, int double price);
//Returns the price per square inch of a pizza
//The formal parameter named diameter is the
//diameter of the pizza in inches. The formal
// parameter named price is the price of the
// pizza.

Buying Pizza Algorithm Design

Slide 4- 81

� Subtask 1
� Ask for the input values and store them in variables

� diameter_small diameter_large
price_small price_large

� Subtask 4
� Compare cost per square inch of the two pizzas using

the less than operator

� Subtask 5
� Standard output of the results

Buying Pizza unitprice Algorithm

Slide 4- 82

r2p

� Subtasks 2 and 3 are implemented as calls to
function unitprice

� unitprice algorithm
� Compute the radius of the pizza
� Computer the area of the pizza using
� Return the value of (price / area)

Buying Pizza unitprice Pseudocode

Slide 4- 83

� Pseudocode
� Mixture of C++ and english
� Allows us to make the algorithm more precise without

worrying about the details of C++ syntax

� unitprice pseudocode
� radius = one half of diameter;

area = π * radius * radius
return (price / area)

Buying Pizza The Calls of unitprice

Slide 4- 84

� Main part of the program implements calls
of unitprice as
� double unit_price_small, unit_price_large;

unit_price_small = unitprice(diameter_small, price_small);
unit_price_large = unitprice(diameter_large, price_large);

Buying Pizza First try at unitprice

Slide 4- 85

� double unitprice (int diameter, double price)
{

const double PI = 3.14159;
double radius, area;

radius = diameter / 2;
area = PI * radius * radius;
return (price / area);

}
� Oops! Radius should include the fractional part

Buying Pizza Second try at unitprice

Slide 4- 86

� double unitprice (int diameter, double price)
{

const double PI = 3.14159;
double radius, area;

radius = diameter / static_cast<double>(2) ;
area = PI * radius * radius;
return (price / area);

}

� Now radius will include fractional parts
� radius = diameter / 2.0 ; // This would also work

Slide 4- 87

Display 4.10 (2/2)

Slide 4- 88

Back Next

Overloading Example

Slide 4- 89

� Revising Pizza Buying program
� Rectangular pizzas are now offered!
� Change input and add a function to compute unit price of a

rectangular pizza
� new function could be named unitprice_rectangular

� Or, new function could be a new (overloaded) version of unitprice function that
is already used

double unitprice(int length, int width, double price)
{

double area = length * width;
return (price / area);

}

Slide 4- 90

Slide 4- 91

Slide 4- 92

Program Testing

Slide 4- 93

� Programs that compile and run can still produce errors
� Testing increases confidence that the program works correctly

� Run the program with data that has known output
� You may have determined this output with pencil and paper

or a calculator
� Run the program on several different sets of data

� Your first set of data may produce correct results in
spite of a logical error in the code
� Remember the integer division problem? If there is no fractional

remainder, integer division will give apparently correct results

Use Pseudocode

Slide 4- 94

� Pseudocode is a mixture of English and the
programming language in use

� Pseudocode simplifies algorithm design by
allowing you to ignore the specific syntax of
the programming language as you work out
the details of the algorithm
� If the step is obvious, use C++
� If the step is difficult to express in C++, use English

Exercises

Slide 4- 95

� Describe the purpose of the comment that
accompanies a function declaration?

� Describe what it means to say a programmer should be able
to treat a function as a black box?

� Describe what it means for two functions to be
black box equivalent?

Exercises

Slide 4- 96

� Describe Top-Down Design?

� Describe the types of tasks we have seen so far
that could be implemented as C++ functions?

� Describe the principles of
� The black box
� Procedural abstraction
� Information hiding

� Define “local variable”?
� Overload a function name?

Summary

Slide 4- 97

� Predefined Functions
� Programmer-Defined Functions
�Local Variables
�Function call: how to trace?
�Overloading Function Names

� Why functions?
�Procedural Abstraction
�How does it help with problem solving, i.e., Top-Down

Design

