
What we have learnt so far in CS1

Prof. Zhang

February 27, 2014

1 Nuts and Bolts of programming

We have learnt different parts that made up a C++ program. Please review them often.

1.1 C++ Program Structure

Below is a sample C++ program, with comments inside to explain the key parts.

/* This is a sample program

Author: Xiaolan Zhang

Last modified on: 2/8/2014

*/

#include <iostream> //include this file in order to use cin and cout

using namespace std;

int main() // the start of main function

{

//add comment whenever you think it will help you or other programmers to

//understand your code better

statement1; //; ends a statement

statement2;

statement3

statement3 (cont’d)

statement3 (cont’d); //a statement can span multiple lines ...

//comment for the next group of statements...

...

statementn;

}

1

You can break a long statement into multiple lines, only the last line ends with semi-
colon:

cout <<"The total number of students is " << studentNum

<<"Avarage age is " << age <<"\n";

double amount_due = pizza12_num * PIZZA_12_PRICE //subtotal 1

+ pizza14_num * PIZZA_14_PRICE; //subtotal 2

Note that you CANNOT break a statement inside a quoted string, or within a variable
name:

cout <<"Hello world,

my name is C++\n"; //WRONG !!

double amount_due = pizza12 //WRONG!!

_num * PIZZA_12

_PRICE;

1.2 Constants

There are two types of constants.

• literal constant. When you directly write the constant value in your code, you are
using literal constants. For example,

if (response==’Y’) //constant chars are quoted with single quotation mark

cout <<"You choose Y\n"; //the string constant are quoted with double quotation mark

area = 3.14*radius*radius; //3.14 is a literal constant

leapyear= true; //true and false are the two values for bool type

• named constant, or constant variable is used to increase readability of our pro-
grams. For example,

const double PIZZA_12_PRICE=13.99; //PIZZA_12_PRICE is a named constant

1.3 Variables

• Variable: (name, type, value)-tuple, use a box labeled with name, filled with its value

• Variable declaration:

2

type name=initial_value;

• Basic type and user defined type

– Each type uses a fixed amount of memory (sizeof function returns the number
of bytes in a type); supports a set of operations

– Basic type: int, short, long, float, double, char, bool, long long,

– User defined type (need to include header files): string,

• Variable scope: local scope (block scope), global scope, eclipse effect

• Conversion between type: When assigning a floating value to int-type variable, some
information is lost, i.e., the decimal parts of the value are thrown away:

int a=13.999; // a value will be 13

//To get rounding behavior in the conversion:

int a=13.999+0.5; //a value will be 14

int b=13.49+0.5; //b value will be 13

1.4 Expressions

An expression is made up of operators and operands. C++ operators are listed below, and
operands can be variables, constants, other expressions. For example, the following are
expressions.

2+3, (a+sqrt(b))/3,

i=0, x%2 == 0

We have learnt two kinds of constants:

• literal constant: in which we write the value of the constant directly in the code, for
exmaple,

area = 3.1415*radius*radium; //3.1415 is a literal constant

cout <<"area is" << area << "\n";

// here "area is" and "\n" are two constant strings

• named constant (i.e., constant variable), for example,

const double PI=3.1415; //declare and initialize a named constant (use capital letters)

area = PI*radius*radius; //use the named constant.

3

The following are operators that we have learnt so far:

• arithmetic operators:

+, -, *, /, % (only for int, long, short)

Note that for division (/) operation, if both operands are int or long types, it stands
for integer division, the division where the fractional part is discarded. On the other
hand, if one or both operands are double pr float type, then it stands for regular
division, where the fractional part is kept. For example, the following expression for
converting Fahrenheit to Celsius:

double F=100,C;

C = 5/9*(F-32); // this will assign 0 to C, as 5/9 is 0

To fix this problem, you can do the following:

double F=100,C;

C = 5.0/9*(F-32); // 5.0 is not an int, so 5.0/9 is not integer division...

• assignment operator: =

• shorthand operator: ++, –, +=, -=, *=, /=

• comparision operators (i.e., relational operators): <,<=, >,>=,==, ! =

• boolean operators:

&&, ||, !

The complete version of C++ operators precedence can be found at:

http://en.cppreference.com/w/cpp/language/operator_precedence

We have so far learnt the following:

Precedence Operators Description Association

1 ++,−− suffix increment and decrement left-to-right
2 ++,−− prefix increment and decrement right-to-left

! logic NOT
3 * / % multiplicaiton, division, and remainder left-to-right
4 + - Addition and subtration left-to-right
5 <≤>≥ Relation operators left-to-right
6 ==, ! = relational operators left-to-right
7 && logical AND left-to-right
8 || logic OR left-to-right
9 = assignment right-to-left

4

For examples, let’s consider the expression 1 < a < 10. A common mistake made by
beginngers is to interpret this as meaning “a is larger than 1 and smaller than 10”. Now
let’s use the above table to dissect this expression:

The relational operator < is associated from left to right, so we first evaluate 1 < a,
which gives a boolean value. This value (true is 1, false is 0) is then compared to 10, which
is always true.

Now, let’s take a look at another expression a = b = 10. This expression assigns value
10 to both a and b. Why?

The assignment operator = is associated from right-to-left, therefore 10 is assigned to
b, and the subexpression b = 10 is evaluated to 10, this value is then assigned to a.

1.5 Statement

C++ program is made up of statements. All statements end with a semicolon (;). All
statements in the main() body is executed in order.

The following is a list of statements we have learnt:

• Variable declaration statements: for example,

double total_due;

• Expression: for example, a = 10;, cout << ”Helloworld”;

• Empty statement: the following is a statement that does nothing

;

It’s useful in some situation when used in a loop or if/else statement, for example

if (x>0)

; //if x>0, do nothing

else

cout <<"wrong value\n"; //otherwise, display error info.

• Block statement: group a sequence of statments together to form a single statement

{

statement_1;

statement_2;

...

statement_n;

}

5

• if-else statement and if statement. if-else statement is used to implement a two-
way branch.

if (boolean_expression) //1. boolean_expression is first evaluated

yes_statement //2. This yes_statement is executed if the boolean_expression is true

else

no_statement //3. This no_statement is executed if the boolean expression is false

next_statement //4. Both branches merge here...

If statement is used to implement conditional execution.

if (boolean_expression)

yes_statement //this statement is executed if boolean expression is true

Note that the yes statement and no statement above can be any statement, for ex-
ample, it can be an if statement or if-else statement itself. So we might have:

if (boolean_expression_1)

if (boolean_expression_2)

yes_statement_2; // this yes_statement_2 can be an if statement, or if/else statement ...

else

no_statement_2;

else

if (boolean_expression_3)

yes_statement_3;

This is like a nested doll, and the nested level can be very deep, 3, 5, 10.

• for statement, while statement, and do-while statement

• return statement and break statement

return statement leaves a function. For now, all our programs are written in the
main function, so whenever you have a return statement, it will take you out of the
main function, and therefore your program.

return 0; //exit from current function/program...

break statement leaves a loop, even if the condition for the loop’s end is not fulfilled.
It can be used to end an infinite loop, or to force it to end before its natural end. If
break statement is used in a nested loop, it leaves the inner-most loop only.

6

while (true)

{

cout <<"Guess a number:";

cin >> guess;

if (guess==secretnum)

break;

}

2 Coding Style

Please refer to the document “How programs are graded?” for coding styles.

3 When things go wrong...

We have learnt that C++, as a programming language, has certain grammer rules (just
like English). For example, the following are grammar rules that you have learnt:

• variable names need to start with English letters or underscore, and cannot contain
space.

• Reserved words (such as main, int, return) cannot be used for variable names.

• Variables must be declared before referenced (used).

• Statements must end with semicolon (;) (except block statement)

If your program breaks grammar rules, compiler will be able to report them, such errors
are therefore referred to as syntax errors, or compilation errors.

Sometimes your program passes compilation, but the execution result is wrong because
you have expressed your intentions wrong. This is usually caused by so called logic errors.
For example, the following code contains a logic error:

if (x=y) //from the context, we can see that this actually should be x==y

cout <<"x equals to y\n";

else

cout <<"x does not equal to y\n";

The following are common logic errors:

• Confusing = and ==

• Accidental Empty loop body or yes statement

• Forget to use {} to group statements

7

• Access variables before it is initialized with a value

The last category of errors also happen at runtime (i.e., when you execute the program),
it’s sometimes called fatal error, or runtime errors. For example,

int scores=500;

int num = 0;

int avg = scores / num;

The program will crash, and reports error messages such as

floating exceptions

8

