
CISC1600, Spring 2013

Dr. X. Zhang, Fordham University

C++ Basics: flow control

Outline

2

 Flow control and branch

 Boolean expression

 Comparison operators

 Boolean operations: &&, ||, !

 Loop: to repeat statements

 While loop

 Do/while loop

 Infinite loop

 Programming Style

 Comments, indentations, named constant

Simple Flow of Control

3

 Flow of control: order in which statements are
executed

 Branch: allow program choose between two
alternatives

 Ex: to calculate hourly wages there are two choices
Regular time (up to 40 hours)
 gross_pay = rate * hours;

Overtime (over 40 hours)
 gross_pay = rate * 40 + 1.5 * rate * (hours - 40);

 The program must choose which of these
expressions to use

Design/Implement Branch

4

 Decide if (hours >40) is true

 If it is true, then use
 gross_pay = rate * 40 + 1.5 * rate * (hours - 40);

 If it is not true, then use
 gross_pay = rate * hours;

 if-else statement is used in C++ to perform a branch

 if (hours > 40)
 gross_pay = rate * 40 + 1.5 * rate * (hours - 40);

else

 gross_pay = rate * hours;

5

if-else Flow Control

6

 if (boolean expression)
 statement1
else
 statement2

 When boolean expression is true

 Only statement1 is executed

 When boolean expression is false

 Only statement2 is executed

Compound Statements

7

 Compound Statement: one or more statements enclosed in { }

 Branches of if-else statements often need to execute more that one
statement

 if (boolean expression)
{
 statement 1;

 ….

 statement n;
}
else
 {

 statement1;

 …
 }

8

9

Outline

10

 Flow control and branch

 Boolean expression

 Comparison operators

 Boolean operations: &&, ||, !

 Loop: to repeat statements

 While loop

 Do/while loop

 Infinite loop

 Programming Style

 Comments, indentations, named constant

Boolean Expressions

11

 Boolean expressions: expressions that are either true
or false, i.e., have a bool value

 Comparison operators: used to compare variables
and/or numbers, and generate a bool value

 e.g., (hours > 40) evaluates to true if value of hours is
greater than 40; otherwise evaluates to false

 e.g., (choice==‘q’) evaluates to true if choice is equal
to ‘q’; otherwise, evaluates to false

12

No spaces allowed between

the two symbols

Boolean operations

13

 Arithmetic operations are applied to numerical variables

or constants:

 Five operations: +, -, *, /, %

 E.g., (f – 32) * 5.0 / 9.0 // to convert Farenhite degree to

celsius degree

 Boolean Operations: applied to boolean expressions or

variables

 Three operations: &&, ||, !

 E.g., (x > y && x > z)

 E.g., !(x==y)

AND operation

14

 && -- AND operator

 Syntax: (boolean_exp1) && (boolean_exp2)

 True if both boolean expressions are true

 e.g: ((2 < x) && (x < 7))

 True only if x is between 2 and 7

 Inside parentheses are optional but enhance meaning

Operand_1 Operand_2 Operand1 && Operand2

True True true

True False True

False True False

False False false

OR

15

 | | -- The OR operator

 Syntax: (bool_exp_1) | | (bool_exp_2)

 True if either or both expressions are true

 e.g: if ((x = = 1) | | (x = = y))

 True if x contains 1

 True if x contains same value as y

 True if both comparisons are true

Operand1 Operand2 Operand1 ||

Operand2

True True True

True False True

False True True

False False False

NOT: negation

16

 ! -- negates any boolean expression

 !(x < y)

 True if x is NOT less than y

 !(x = = y)

 True if x is NOT equal to y

 ! Operator can make expressions difficult to understand

…use only when appropriate

Operand !operand

True False

False true

Inequalities

17

 Be careful translating inequalities to C++

 if x < y < z translates as

 if ((x < y) && (y < z))

 NOT

 if (x < y < z)

Pitfall: Using = or ==

18

 ' = ' is the assignment operator

 Used to assign values to variables

 x = 3;

 '= = ' is equality operator

 Used to compare values

 if (x == 3)

 The compiler will accept this :
 if (x = 3)
but stores 3 in x instead of comparing x and 3

 Since the result is 3 (non-zero), the expression is true

Branches Exercise

19

 Can you

 Write an if-else statement that outputs the word
High if the value of the variable score is greater
than 100 and Low if the value of score is at most
100? The variables are of type int.

 Write an if-else statement that outputs the word
Warning provided that either the value of the variable
temperature is greater than or equal to 100, or the
of the variable pressure is greater than or equal to
200, or both. Otherwise, the if_else sttement outputs
the word OK. The variables are of type int.

Outline

20

 Flow control and branch

 Boolean expression

 Comparison operators

 Boolean operations: &&, ||, !

 Loop: to repeat statements

 While loop

 Do/while loop

 Infinite loop

 Programming Style

 Comments, indentations, named constant

Simple Loops

21

 When an action must be repeated, a loop is used
 C++ includes several ways to create loops

 while-loop

 e.g., while (count_down > 0)

 {
 cout << "Hello ";
 count_down -= 1;
 }

 Output: Hello Hello Hello
when count_down starts at 3

22

While Loop Operation

23

 First, boolean expression is evaluated

 If false, program skips to line following
while loop

 If true, body of loop is executed
 During execution, some item from boolean

expression
is changed

 After executing loop body, boolean
expression is checked again repeating
process until expression becomes false

 A while loop might not execute at all if
boolean expression is false on the first
check

while (count_down > 0)

 {

 cout << "Hello ";

 count_down -= 1;
}

Boolean expression

The body of loop

24

do-while loop

25

 A do-while loop is always executed at least once

 body of the loop is first executed

 boolean expression is checked after the body

has been executed

 Syntax:

 do

 {

 statements to repeat

 } while (boolean_expression);

26

Slid

e 2-

27

Sample Program

28

 Bank charge card balance of $50

 2% per month interest

 How many months without payments before

your balance exceeds $100

 After 1 month: $50 + 2% of $50 = $51

 After 2 months: $51 + 2% of $51 = $52.02

 After 3 months: $52.02 + 2% of $52.02 …

29

Infinite Loops

30

 infinite loops: loops that never stop are
 loop body should contain a line that will eventually cause

boolean expression to become false

 e.g.,: print odd numbers less than 12
 x = 1;
 while (x != 12)
 {
 cout << x << endl;
 x = x + 2;
 }

 Better to use this comparison: while (x < 12)

Exercises

31

• Can you show the output of this code if x is of type int?
 x = 10;
while (x > 0)
 {
 cout << x << endl;
 x = x – 3;
 }

– Show the output of the previous code using the
comparison x < 0 instead of x > 0?

Outline

32

 Flow control and branch

 Boolean expression

 Comparison operators

 Boolean operations: &&, ||, !

 Loop: to repeat statements

 While loop

 Do/while loop

 Infinite loop

 Programming Style

 Comments, indentations, named constant

Program Style

33

 A program written with attention to style

 is easier to read

 easier to correct

 easier to change

 Indentations, Comments, Named Constants

Program Style - Indenting

34

 Items considered a group should look like a group

 Skip lines between logical groups of statements

 Indent statements within statements

 if (x = = 0)

 statement;

 Braces {} create groups

 Indent within braces to make the group clear

 Braces placed on separate lines are easier to locate

Program Style - Comments

 35

 // is the symbol for a single line comment

 Comments are explanatory notes for the programmer

 All text on the line following // is ignored by the
compiler

 Example: //calculate regular wages
 gross_pay = rate * hours;

 /* and */ enclose multiple line comments

 Example: /* This is a comment that spans
 multiple lines without a
 comment symbol on the middle line
 */

Program Style - Constants

36

 Number constants have no mnemonic value

 Number constants used throughout a program

are difficult to find and change when needed

 Constants

 Allow us to name number constants so they have

meaning

 Allow us to change all occurrences simply by

changing the value of the constant

Constants

37

 const is the keyword to declare a constant

 Example:
 const int WINDOW_COUNT = 10;
declares a constant named WINDOW_COUNT

 Its value cannot be changed by program like a variable

 It is common to name constants with all capitals

Exercises

38

 Can you

 Create a named constant of type double?

 Determine if a program can modify the value of a

constant?

 Describe the benefits of comments?

 Explain why indenting is important in a program?

 Explain why blank lines are important in a program?

Summary

39

 Flow control and branch

 Boolean expression

 Comparison operators

 Boolean operations: &&, ||, !

 Loop: to repeat statements

 While loop

 Do/while loop

 Infinite loop

 Programming Style

 Comments, indentations, named constant

