CISC 2100/2110 — Discrete Structure II Fall, 2015

Homework Assignment #4

These questions are from the following textbook, Discrete Mathematics with Applications, by Susanna S. Epp.

- **1** Are the following statements true or false. Prove the statement from the definition if it is true, and give a counterexample if it is false.
 - (a) For all integers a, b, and c, if a|bc then a|b or a|c.

(b) For all integers a and n, if $a|n^2$ and $a \le n$ then a|n.

 $\mathbf{2}$ Use the unique factorization theorem to write integer 5733 in standard factored form.

3 If n is an integer and n > 1, then n! is the product of n and every other positive integers that is less than n. For example, $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$. Without computing the value of $(20!)^2$, determine how many zeros are at the end of this number when it is written in decimal form. Justify your answer. (Hint: $10 = 2 \cdot 5$).

4 Suppose c is an integer. If $c \mod 15 = 3$, what is $10c \mod 15$?

5 Prove that the square of any integer has the form of 4k or 4k + 1 for some integer k.

6 If m, n, and d are integers, d > 0, and $m \mod d = n \mod d$, does it necessarily follow that m = n? Does it necessarily follow that m - n is divisible by d? Prove your answer.

7 Is the following statement true or false? Prove your answer. For all odd integers n, $\lceil n/2 \rceil = (n+1)/2$. (Note, please only use the definition of odd integer, and the ceiling in your proof.) 8 For any integer m and any real number x, if x is not an integer, then $\lfloor x \rfloor + \lfloor m - x \rfloor = m - 1$. (Note: please use only the definition of floor in your proof. Hint: You can start by let $k = \lfloor x \rfloor$, and then use the definition of floor to write an inequation about x.

9 Prove the following statement by **contradiction**: If a and b are rational numbers, $b \neq 0$, and r is irrational number, then a + br is irrational.

10 Prove the following statement by **contradiction**: For all integers a, if a mod 6 = 3, then a mod $3 \neq 2$.

11 Prove the following statement by **contraposition**: If a sum of two real numbers is less than 50, then at least one of the numbers is less than 25.