• More complicated circuits correspond to more complicated logical expressions.
• This correspondence has been used extensively in design and study of circuits.
• Electrical engineers use language of logic when refer to values of signals produced by an electronic switch as being “true” or “false.”
 • Only that symbols 1 and 0 are used
 • symbols 0 and 1 are called bits, short for binary digit.
• This terminology was introduced in 1946 by the statistician John Tukey.
Black Boxes and Gates

- **Circuits**: transform combinations of signal bits (1's and 0's) into other combinations of signal bits (1's and 0's).
- Computer engineers and digital system designers treat basic circuits as black boxes.
 - Ignore inside of a black box (detailed implementation of circuit)
 - Focused on the relation between the *input* and the *output* signals.

Programmable-black box:

![Diagram](https://via.placeholder.com/150)

- Operation of a black box is completely specified by constructing an *input/output table* that lists all its possible input signals together with their corresponding output signals.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>P Q R</td>
<td>S</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1</td>
</tr>
<tr>
<td>1 1 0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 1</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>1</td>
</tr>
<tr>
<td>0 1 1</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>1</td>
</tr>
<tr>
<td>0 0 1</td>
<td>1</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0</td>
</tr>
</tbody>
</table>
An efficient method for designing more complicated circuits is to build them by connecting less complicated black box circuits.

Gates can be combined into circuits in a variety of ways. If the rules shown on the next page are obeyed, the result is a **combinational circuit**, one whose output at any time is determined entirely by its input at that time without regard to previous inputs.

A NOT-gate (or inverter) is a circuit with one input signal and one output signal. If the input signal is 1, the output signal is 0. Conversely, if the input signal is 0, then the output signal is 1.

An AND-gate is a circuit with two input signals and one output signal. If both input signals are 1, then the output signal is 1. Otherwise, the output signal is 0.

An OR-gate also has two input signals and one output signal. If both input signals are 0, then the output signal is 0. Otherwise, the output signal is 1.
The Input/Output Table for a Circuit

Determining Output for a Given Input

Indicate the output of the circuits shown below for the given input signals.

a.

Input signals: \(P = 0 \) and \(Q = 1 \)

b.

Input signals: \(P = 1, \quad Q = 0, \quad R = 1 \)

If you are given a set of input signals for a circuit, you can find its output by tracing through the circuit gate by gate.

Example 1(a) – Solution

Move from left to right through the diagram, tracing the action of each gate on the input signals.

The NOT-gate changes \(P = 0 \) to a 1, so both inputs to the AND-gate are 1; hence the output \(R \) is 1.

This is illustrated by annotating the diagram as shown below.
The output of the OR-gate is 1 since one of the input signals, \(P \), is 1. The NOT-gate changes this 1 into a 0, so the two inputs to the AND-gate are 0 and \(R = 1 \).

Hence the output \(S \) is 0. The trace is shown below.

\[
\begin{array}{c}
P \rightarrow 1 \quad \text{OR} \quad Q \rightarrow 0 \\
\text{NOT} \quad 0 \\
\text{AND} \quad 0 \rightarrow S
\end{array}
\]

Circuit => Boolean Expression

Boolean Expression Corresponding to a Circuit

In logic, variables such as \(p, q \) and \(r \) represent statements, and a statement can have one of only two truth values: \(T \) (true) or \(F \) (false).

A **statement form** is an expression, such as \(p \land (\neg q \lor r) \), composed of statement variables and logical connectives.

In honor of English mathematician George Boole:

- any variable, such as a statement variable or an input signal, that can take one of only two values is called a **Boolean variable**.
- An expression composed of Boolean variables and connectives \(\neg, \land, \lor \) is called a **Boolean expression**.
Find Boolean expressions that correspond to circuits shown below. A dot indicates a soldering of two wires; wires that cross without a dot are assumed not to touch.

Trace through the circuit from left (input) to right (output), indicating output of each gate symbolically...

The final expression obtained, \((P \lor Q) \land \neg(P \land Q)\), is the expression for exclusive or: \(P\) or \(Q\) but not both.

Find Boolean expressions that correspond to circuits shown below. A dot indicates a soldering of two wires; wires that cross without a dot are assumed not to touch.

Trace through the circuit from left to right, indicating the output of each gate symbolically.
The Boolean expression corresponding to the circuit is

\[(P \land Q) \land \sim R,\] as shown below.

Observe the output is 1 for exactly one combination of inputs

\((P = 1, Q = 1, \text{and } R = 0)\) and is 0 for all other combinations of inputs.

This circuit can be said to “recognize” one particular combination of inputs.

Example 3(b) – Solution cont’d

Observe the output is 1 for exactly one combination of inputs

\((P = 1, Q = 1, \text{and } R = 0)\) and is 0 for all other combinations of inputs.

The Boolean Expression Corresponding to a Circuit

This circuit can be said to “recognize” one particular combination of inputs.

Input/Output Table for a Recognizer

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(R)</th>
<th>((P \land Q) \land \sim R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Define

A **recognizer** is a circuit that outputs a 1 for exactly one particular combination of input signals and outputs 0’s for all other combinations.
Constructing Circuits for Boolean Expressions

Construct circuits for following Boolean expressions.

\((\neg P \land Q) \lor \neg Q\)

Solution (from right to left)

Write input variables in a column on left side of diagram. Then go from right side of the diagram to the left, working from outermost part of the expression to the innermost part.

Solution cont’d

\(((P \land Q) \land (R \land S)) \land T\)
Constructing Circuits for Boolean Expressions

Construct circuits for following Boolean expressions.

\(((P \land Q) \land (R \land S)) \land T\)

The Circuit Corresponding to a Boolean Expression

It follows from Theorem 2.1.1 that all the ways of adding parentheses to \(P \land Q \land R \land S \land T\) are logically equivalent.

Theorem 2.1.1 Logical Equivalences

<table>
<thead>
<tr>
<th>Given any statement variables (p, q, r, t,) and (e), a tautology (t) and a contradiction (e), the following logical equivalences hold:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Commutative laws: (p \land q \iff q \land p) \hspace{1cm} (p \lor q \iff q \lor p)</td>
</tr>
<tr>
<td>2. Associative laws: ((p \land q) \land r \iff p \land (q \land r)) \hspace{1cm} ((p \lor q) \lor r \iff p \lor (q \lor r))</td>
</tr>
<tr>
<td>3. Distributive laws: (p \land (q \lor r) \iff (p \land q) \lor (p \land r)) \hspace{1cm} (p \lor (q \land r) \iff (p \lor q) \land (p \lor r))</td>
</tr>
<tr>
<td>4. Identity laws: (p \land t \iff p) \hspace{1cm} (p \lor e \iff p)</td>
</tr>
<tr>
<td>5. Negation laws: (p \iff \neg \neg p) \hspace{1cm} (p \iff p \iff e)</td>
</tr>
<tr>
<td>6. Double negation law: (\neg \neg p \iff p)</td>
</tr>
<tr>
<td>7. Idempotent laws: (p \land p \iff p) \hspace{1cm} (p \lor p \iff p)</td>
</tr>
<tr>
<td>8. Universal bound laws: (p \land t \iff t) \hspace{1cm} (p \lor e \iff e)</td>
</tr>
<tr>
<td>9. De Morgan’s laws: (\neg (p \land q) \iff \neg q \lor \neg q) \hspace{1cm} (\neg (p \lor q) \iff \neg p \land \neg q)</td>
</tr>
<tr>
<td>10. Absorption laws: (p \lor (p \land q) \iff p) \hspace{1cm} (p \land (p \lor q) \iff p)</td>
</tr>
<tr>
<td>11. Negation of (t) and (e): (\neg t \iff e) \hspace{1cm} (\neg e \iff t)</td>
</tr>
</tbody>
</table>

The Circuit Corresponding to a Boolean Expression

Thus, for example,

\(((P \land Q) \land (R \land S)) \land T \iff (P \land (Q \land R)) \land (S \land T)\).

It also follows that the circuit in Figure 2.4.5, which corresponds to \((P \land (Q \land R)) \land (S \land T)\), has the same input/output table as the circuit in Figure 2.4.4, which corresponds to \(((P \land Q) \land (R \land S)) \land T\).
Each of the circuits in Figures 2.4.4 and 2.4.5 is, therefore, an implementation of the expression $P \land Q \land R \land S \land T$. Such a circuit is called a multiple-input AND-gate and is represented by the diagram shown in Figure 2.4.6.

Multiple-input OR-gates are constructed similarly.
Example 5 – Solution

First construct a Boolean expression with this table as its truth table:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

• Identify each row for which the output is 1—in this case, the first, third, and fourth rows.

• For each such row, construct an and expression that recognizes that combination.

• It follows that one Boolean expression with the given truth table is

\[(P \land Q \land R) \lor (P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R).\]

The circuit corresponding to this expression has the diagram shown in Figure 2.4.7.

Example 5 – Solution cont’d

Observe that expression

\[(P \land Q \land R) \lor (P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R).\]

is a disjunction of terms that are themselves conjunctions in which one of \(P\) or \(\neg P\), one of \(Q\) or \(\neg Q\), and one of \(R\) or \(\neg R\) all appear.

Such expressions are said to be in disjunctive normal form or sum-of-products form.
Consider the two combinational circuits shown in Figure 2.4.8.

Trace through following circuit, you will find that its input/output table is

which is the same as the input/output table for following circuit

the two circuits do same job in the sense that they transform combinations of input signals into same output signals.
Yet circuit (b) is simpler than circuit (a) in that it contains many fewer logic gates. Thus, as part of an integrated circuit, it would take less space and require less power.

Definition
Two digital logic circuits are equivalent if, and only if, their input/output tables are identical.

Simplifying Combinational Circuits

Showing Two Circuits Are Equivalent

Find the Boolean expressions for each circuit below. Use Theorem 2.1.1 (logical equivalence) to show that these expressions are logically equivalent.

![Circuit Diagram](image)

Example 6 – Showing That Two Circuits Are Equivalent

<table>
<thead>
<tr>
<th>Theorem 2.1 Logical Equivalences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given any statement variables p, q, and r, a tautology t and a contradiction e, the following logical equivalences hold:</td>
</tr>
<tr>
<td>1. Commutative laws: $p \lor q = q \lor p$</td>
</tr>
<tr>
<td>2. Associative laws: $(p \lor q) \lor r = p \lor (q \lor r)$</td>
</tr>
<tr>
<td>3. Distributive laws: $p \lor (q \land r) = (p \lor q) \land (p \lor r)$</td>
</tr>
<tr>
<td>4. Identity laws: $p \land t = p$</td>
</tr>
<tr>
<td>5. Negation laws: $p \land \neg p = t$</td>
</tr>
<tr>
<td>6. Double negative law: $\neg \neg p = p$</td>
</tr>
<tr>
<td>7. De Morgan's laws: $\neg(p \land q) = \neg p \lor \neg q$</td>
</tr>
<tr>
<td>8. Universal bound laws: $p \lor \neg t = \neg e$</td>
</tr>
<tr>
<td>9. Absorption laws: $p \lor (p \land q) = p$</td>
</tr>
<tr>
<td>10. De Morgan's laws: $\neg(p \lor q) = \neg p \land \neg q$</td>
</tr>
<tr>
<td>11. Negation of t and e: $\neg t = e$</td>
</tr>
</tbody>
</table>
The Boolean expressions that correspond to circuits (a) and (b) are \((P \land \neg Q) \lor (P \land Q) \land Q\) and \(P \land Q\), respectively.

By Theorem 2.1.1,

\[
((P \land \neg Q) \lor (P \land Q)) \land Q \\
\equiv (P \land (\neg Q \lor Q)) \land Q \quad \text{by the distributive law} \\
\equiv (P \land Q) \land Q \quad \text{by the commutative law for } \lor
\]

Example 6 – Solution

\[
\equiv \neg (P \land Q) \quad \text{by the negation law} \\
\equiv P \land Q \quad \text{by the identity law.}
\]

It follows that the truth tables for \(((P \land \neg Q) \lor (P \land Q)) \land Q\) and \(P \land Q\) are the same.

Hence the input/output tables for the circuits corresponding to these expressions are also the same, and so the circuits are equivalent.

NAND and NOR Gates
Another way to simplify a circuit is to use different gates:

- A NAND-gate is a single gate that acts like an AND-gate followed by a NOT-gate. The logical symbol is \mid, called a **Sheffer stroke** (after H. M. Sheffer, 1882–1964)

- A NOR-gate acts like an OR-gate followed by a NOT-gate. The logical symbol is \downarrow (for NOR), which is called a **Peirce arrow** (after C. S. Peirce, 1839–1914)

$$P \mid Q \equiv \neg(P \land Q) \quad \text{and} \quad P \downarrow Q \equiv \neg(P \lor Q).$$

NAND and NOR Gates

The table below summarizes the actions of NAND and NOR gates.

<table>
<thead>
<tr>
<th>Type of Gate</th>
<th>Symbolic Representation</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAND</td>
<td>$P \mid Q$</td>
<td>$R = P \mid Q$</td>
</tr>
<tr>
<td>NOR</td>
<td>$P \downarrow Q$</td>
<td>$R = P \downarrow Q$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

It can be shown that any Boolean expression is equivalent to one written entirely with Sheffer strokes or entirely with Peirce arrows.

Thus any digital logic circuit is equivalent to one that uses only NAND-gates or only NOR-gates.
Example 7 – Rewriting Expressions Using the Sheffer Stroke

Use Theorem 2.1.1 and the definition of Sheffer stroke to show that

a. \(\neg P \equiv P \mid P \) and

b. \(P \lor Q \equiv (P \mid P) \mid (Q \mid Q) \).

Solution:

a. \(\neg P \equiv \neg(P \land P) \) by the idempotent law for \(\land \)

\[\equiv P \mid P \] by definition of \(\mid \).

b. \(P \lor Q \equiv \neg \neg(P \lor Q) \) by the double negative law

\[\equiv \neg(P \land \neg Q) \] by De Morgan’s laws

Example 7 – Solution

c. \(\equiv \neg((P \mid P) \land (Q \mid Q)) \) by part (a)

\[\equiv (P \mid P) \mid (Q \mid Q) \] by definition of \(\mid \).
Meaning of decimal notation:

to interpret a string of decimal digits as a number, you multiply each digit by its place value.

\[5,049 = 5 \times (1,000) + 0 \times (100) + 4 \times (10) + 9 \times (1). \]

Using exponential notation:

\[5,049 = 5 \times 10^3 + 0 \times 10^2 + 4 \times 10^1 + 9 \times 10^0. \]

Decimal notation is based on the fact that any positive integer can be written uniquely as a sum of products of the form

\[d \times 10^n, \]

where each \(n \) is a nonnegative integer and each \(d \) is one of the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

The word \textit{decimal} comes from Latin root \textit{deci}, meaning "ten." Decimal (or base 10) notation expresses a number as a string of digits in which each digit's position indicates the power of 10 by which it is multiplied.

right-most position is the ones place (or \(10^0 \) place), to the left of that is the tens place (or \(10^1 \) place), to the left of that is the hundreds place (or \(10^2 \) place), and so forth, as illustrated below.

<table>
<thead>
<tr>
<th>Place</th>
<th>(10^3) thousands</th>
<th>(10^2) hundreds</th>
<th>(10^1) tens</th>
<th>(10^0) ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal Digit</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>
Binary Representation of Numbers

base 2 notation, or **binary notation**, is of special importance because signals used in modern electronics are always in one of only two states. (Latin root *bi* means “two.”)

We can show that any integer can be represented uniquely as a sum of products of the form

\[d \cdot 2^n, \]

where each \(n \) is an integer and each \(d \) is one of the binary digits (or bits) 0 or 1.

\[27 = 16 + 8 + 2 + 1 \]
\[= 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0. \]

Places in binary notation correspond to various powers of 2.

27 in binary is 11011.

Binary Representation of Numbers

The right-most position is the ones place (or \(2^0 \) place), to the left of that is the twos place (or \(2^1 \) place), to the left of that is the fours place (or \(2^2 \) place), and so forth, as illustrated below.

<table>
<thead>
<tr>
<th>Place</th>
<th>(2^4)十六s</th>
<th>(2^3) eights</th>
<th>(2^2) fours</th>
<th>(2^1) twos</th>
<th>(2^0) ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Digit</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Leading zeros may be added or dropped as desired.

\[003_{10} = 3_{10} = 1 \cdot 2^1 + 1 \cdot 2^0 = 111_2 = 011_2. \]
Binary Representation of Numbers

A list of powers of 2 is useful for doing binary-to-decimal and decimal-to-binary conversions.

<table>
<thead>
<tr>
<th>Power of 2</th>
<th>2^0</th>
<th>2^1</th>
<th>2^2</th>
<th>2^3</th>
<th>2^4</th>
<th>2^5</th>
<th>2^6</th>
<th>2^7</th>
<th>2^8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal Form</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>512</td>
</tr>
</tbody>
</table>

Converting a Binary to a Decimal Number

Represent 110101₂ in decimal notation.

Solution:

\[
110101_2 = 1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0
\]

\[
= 32 + 16 + 4 + 1
\]

\[
= 53_{10}
\]

Example 2 – Solution

Alternatively, the schema below may be used.
Example 3 – Converting a Decimal to a Binary Number

Represent 209 in binary notation.

Solution:
Use Table 2.5.1 to write 209 as a sum of powers of 2, starting with the highest power of 2 that is less than 209 and continuing to lower powers.

<table>
<thead>
<tr>
<th>Power of 2</th>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal Form</td>
<td>1024</td>
<td>512</td>
<td>256</td>
<td>128</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 2.5.1

Since 209 is between 128 and 256, the highest power of 2 that is less than 209 is 128. Hence

\[209_{10} = 128 + \text{a smaller number}. \]

Now 209 \(- \) 128 = 81, and 81 is between 64 and 128, so the highest power of 2 that is less than 81 is 64. Hence

\[209_{10} = 128 + 64 + \text{a smaller number}. \]

Continuing in this way, you obtain

\[209_{10} = 128 + 64 + 16 + 1 \]

\[= 1 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0. \]

For each power of 2 that occurs in the sum, there is a 1 in the corresponding position of the binary number.
Example 3 – Solution

For each power of 2 that is missing from the sum, there is a 0 in the corresponding position of the binary number.

Thus

\[209_{10} = 11010001_2 \]

Binary Addition and Subtraction

Example 4 – Addition in Binary Notation

Add 1101₂ and 111₂ using binary notation.

Solution:
Because \(2_{10} = 10₂ \) and \(1_{10} = 1₂ \), the translation of \(1_{10} + 1_{10} = 2_{10} \) to binary notation is

\[
\begin{array}{c}
1_2 \\
+ 1_2 \\
\hline
10_2
\end{array}
\]

It follows that adding two 1’s together results in a carry of 1 when binary notation is used.
Example 4 – Solution

Adding three 1’s together also results in a carry of 1 since $3_{10} = 11_2$ ("one one base two").

\[
\begin{array}{c}
\hline
1_2 \\
+ 1_2 \\
+ 1_2 \\
\hline
11_2 \\
\end{array}
\]

Thus the addition can be performed as follows:

\[
\begin{array}{c}
1 \\
1 \\
+ 1 \\
\hline
1 \\
\end{array}
\begin{array}{c}
1 \\
1 \\
+ 1 \\
\hline
0 \\
\end{array}
\begin{array}{c}
1 \\
0 \\
\hline
0 \\
\end{array}
\]

Example 5 – Subtraction in Binary Notation

Subtract 1011\textsubscript{2} from 11000\textsubscript{2} using binary notation.

Solution:

In decimal subtraction the fact that $10_{10} - 1_{10} = 9_{10}$ is used to borrow across several columns. For example, consider the following:

\[
\begin{array}{c}
9 \\
1 \\
\hline
10 \\
\end{array} \begin{array}{c}
9 \\
4 \\
\hline
5 \\
\end{array}_\text{row}
\begin{array}{c}
9 \\
4 \\
\hline
10 \\
\end{array}_\text{borrow row}
\begin{array}{c}
1 \\
0 \\
\hline
5 \\
\end{array}
\begin{array}{c}
1 \\
0 \\
\hline
4 \\
\end{array}_\text{row}
\begin{array}{c}
1 \\
\hline
10 \\
\end{array}_\text{borrow row}
\begin{array}{c}
0 \\
1 \\
\hline
1 \\
\end{array}
\begin{array}{c}
0 \\
1 \\
\hline
1 \\
\end{array}
\begin{array}{c}
0 \\
1 \\
\hline
0 \\
\end{array}
\begin{array}{c}
1 \\
1 \\
\hline
0 \\
\end{array}
\begin{array}{c}
1 \\
\hline
1 \\
\end{array}
\begin{array}{c}
1 \\
\hline
1 \\
\end{array}
\begin{array}{c}
1 \\
\hline
1 \\
\end{array}
\]

Example 5 – Solution

In binary subtraction it may also be necessary to borrow across more than one column. But when you borrow a 1_2 from 10_2, what remains is 1_2.

\[
\begin{array}{c}
10_2 \\
\hline
- 1_2 \\
\hline
1_2 \\
\end{array}
\]

Thus the subtraction can be performed as follows:

\[
\begin{array}{c}
0 \\
1 \\
\hline
1 \\
\end{array} \begin{array}{c}
1 \\
1 \\
\hline
1 \\
\end{array} \begin{array}{c}
1 \\
0 \\
\hline
0 \\
\end{array} \begin{array}{c}
1 \\
1 \\
\hline
0 \\
\end{array} \begin{array}{c}
1 \\
0 \\
\hline
0 \\
\end{array} \begin{array}{c}
1 \\
1 \\
\hline
1 \\
\end{array}_\text{row}
\begin{array}{c}
0 \\
1 \\
\hline
1 \\
\end{array} \begin{array}{c}
1 \\
1 \\
\hline
1 \\
\end{array}_\text{row}
\begin{array}{c}
0 \\
1 \\
\hline
1 \\
\end{array}
\begin{array}{c}
1 \\
0 \\
\hline
1 \\
\end{array}
\begin{array}{c}
1 \\
\hline
1 \\
\end{array}
\begin{array}{c}
1 \\
\hline
1 \\
\end{array}
\]

Consider the question of designing a circuit to produce the sum of two binary digits P and Q. Both P and Q can be either 0 or 1. And the following facts are known:

- The carry output is 1 if both P and Q are 1; it is 0 otherwise.
- The sum output is 1 if either P or Q, but not both, is 1.

Thus the carry can be produced using the AND-gate circuit that corresponds to the Boolean expression $P \land Q$. The sum output is 1 if either P or Q, but not both, is 1.
The sum can, therefore, be produced using a circuit that corresponds to the Boolean expression for exclusive or: \((P \lor Q) \land \sim (P \land Q)\). Hence, a circuit to add two binary digits \(P\) and \(Q\) can be constructed as in Figure 2.5.1. This circuit is called a half-adder.

![Half-Adder Circuit](image)

Circuit to Add \(P + Q\), Where \(P\) and \(Q\) Are Binary Digits

Figure 2.5.1

In order to construct a circuit that will add multidigit binary numbers, it is necessary to incorporate a circuit that will compute the sum of three binary digits. Such a circuit is called a full-adder.

Consider a general addition of three binary digits \(P\), \(Q\), and \(R\) that results in a carry (or left-most digit) \(C\) and a sum (or right-most digit) \(S\).

\[
\begin{array}{c}
P \\
\hline
+ Q \\
\hline
+ R \\
\hline
\hline
CS
\end{array}
\]

The operation of the full-adder is based on the fact that addition is a binary operation: Only two numbers can be added at one time. Thus \(P\) is first added to \(Q\) and then the result is added to \(R\). For instance, consider the following addition:

\[
\begin{array}{c}
\frac{1}{11} \\
\hline
\frac{1}{12} \\
\hline
\frac{0}{12} \\
\hline
\hline
\frac{10}{2}
\end{array}
\]
Circuits for Computer Addition

The process illustrated here can be broken down into steps that use half-adder circuits.

Step 1: Add \(P \) and \(Q \) using a half-adder to obtain a binary number with two digits.

\[
\begin{array}{c}
 \hline
 P \\
 + \quad Q \\
 \hline
 C_1 S_1 \\
 \hline
\end{array}
\]

Step 2: Add \(R \) to the sum \(C_1 S_1 \) of \(P \) and \(Q \).

\[
\begin{array}{c}
 \hline
 C_1 S_1 \\
 + \quad R \\
 \hline
 C_2 S_1 \\
 \hline
\end{array}
\]

To do this, proceed as follows:

Step 2a: Add \(R \) to \(S_1 \) using a half-adder to obtain the two-digit number \(C_2 S_1 \).

\[
\begin{array}{c}
 \hline
 S_1 \\
 + \quad R \\
 \hline
 C_2 S \\
 \hline
\end{array}
\]

Then \(S \) is the right-most digit of the entire sum of \(P, Q, \) and \(R \).

Step 2b: Determine the left-most digit, \(C \), of the entire sum as follows: First note that it is impossible for both \(C_1 \) and \(C_2 \) to be 1’s. For if \(C_1 = 1 \), then \(P \) and \(Q \) are both 1, and so \(S_1 = 0 \). Consequently, the addition of \(S_1 \) and \(R \) gives a binary number \(C_2 S_1 \) where \(C_2 = 0 \).

Next observe that \(C \) will be a 1 in the case that the addition of \(P \) and \(Q \) gives a carry of 1 or in the case that the addition of \(S_1 \) (the right-most digit of \(P + Q \)) and \(R \) gives a carry of 1.
Circuits for Computer Addition

In other words, $C = 1$ if, and only if, $C_1 = 1$ or $C_2 = 1$. It follows that the circuit shown in Figure 2.5.2 will compute the sum of three binary digits.

![Figure 2.5.2](image1)

Circuit to Add $P + Q + R$, Where P, Q, and R Are Binary Digits

Two full-adders and one half-adder can be used together to build a circuit that will add two three-digit binary numbers PQR and STU to obtain the sum $WXYZ$. This is illustrated in Figure 2.5.3. Such a circuit is called a parallel adder.

Parallel adders can be constructed to add binary numbers of any finite length.

![Figure 2.5.3](image2)

A Parallel Adder to Add PQR and STU to Obtain $WXYZ$

Two’s Complements and the Computer Representation of Negative Integers
Two’s Complements and the Computer Representation of Negative Integers

Typically, a fixed number of bits is used to represent integers on a computer, and these are required to represent negative as well as nonnegative integers.

Sometimes a particular bit, normally the left-most, is used as a sign indicator, and the remaining bits are taken to be the absolute value of the number in binary notation.

The problem with this approach is that the procedures for adding the resulting numbers are somewhat complicated and the representation of 0 is not unique.

A more common approach, using two’s complements, makes it possible to add integers quite easily and results in a unique representation for 0. The two’s complement of an integer relative to a fixed bit length is defined as follows:

Definition
Given a positive integer a, the two’s complement of a relative to a fixed bit length n is the n-bit binary representation of $2^n - a$.

There is a convenient way to compute two’s complements that involves less arithmetic than direct application of the definition. For an 8-bit representation, it is based on three facts:

1. $2^8 - a = [2^8 - 1] - a + 1$.
2. The binary representation of $2^8 - 1$ is 11111111.
3. Subtracting an 8-bit binary number a from 11111111 just switches all the 0’s in a to 1’s and all the 1’s to 0’s. (The resulting number is called the one’s complement of the given number.)
Two’s Complements and the Computer Representation of Negative Integers

In general,

To find the 8-bit two’s complement of a positive integer a that is at most 255:
- Write the 8-bit binary representation for a.
- Flip the bits (that is, switch all the 1’s to 0’s and all the 0’s to 1’s).
- Add 1 in binary notation.

Example 6 – Finding a Two’s Complement

Find the 8-bit two’s complement of 19.

Solution:
Write the 8-bit binary representation for 19, switch all the 0's to 1's and all the 1's to 0's, and add 1.

$$19_{10} = (16 + 2 + 1)_2$$

$$= 00010011_2 \quad \text{flip the bits} \quad 11101100 \quad \text{add 1} \quad 11101101$$

Example 6 – Solution

To check this result, note that

$$11101101_2 = (128 + 64 + 32 + 8 + 4 + 1)_{10}$$

$$= 237_{10}$$

$$= (256 - 19)_{10}$$

$$= 2^8 - 19$$

which is the two’s complement of 19.
Two's Complements and the Computer Representation of Negative Integers

Observe that because

$$2^n - (2^n - a) = a$$

the two's complement of the two's complement of a number is the number itself, and therefore,

To find the decimal representation of the integer with a given 8-bit two's complement:

- Find the two's complement of the given two's complement.
- Write the decimal equivalent of the result.

Example 7 – Finding a Number with a Given Two's Complement

What is the decimal representation for the integer with two's complement 10101001?

Solution:

\[
\begin{align*}
10101001 & \quad \text{flip the bits} \quad 01010110 \\
& \quad \text{add 1} \quad 00101111 = (64 + 16 + 4 + 2 + 1)_{10} \\
& \quad = 87_{10}
\end{align*}
\]

Example 7 – Solution

To check this result, note that the given number is

\[
10101001 = (128 + 32 + 8 + 1)_{10} = 169_{10} = (256 - 87)_{10}
\]

which is the two's complement of 87.
8-Bit Representation of a Number

Now consider the two's complement of an integer n that satisfies the inequality $1 \leq n \leq 128$. Then

$$-1 \geq -n \geq -128$$

and

$$2^8 - 1 \geq 2^8 - n \geq 2^8 - 128$$

because multiplying by -1 reverses the direction of the inequality.

by adding 2^8 to all parts of the inequality.

But $2^8 - 128 = 256 - 128 = 128 = 2^7$. Hence

$$2^7 \leq \text{the two's complement of } n < 2^8.$$
8-Bit Representation of a Number

That is, for any integer a from -128 through 127,

$$\text{The 8-bit representation of } a = \begin{cases} \text{the 8-bit binary representation of } a & \text{if } a \geq 0 \\ \text{the 8-bit binary representation of } 2^8 - |a| & \text{if } a < 0 \end{cases}$$

The representations are illustrated in Table 2.5.2.

<table>
<thead>
<tr>
<th>Integer</th>
<th>8-Bit Representation (ordinary 8-bit binary notation if nonnegative or 8-bit two’s complement of absolute value if negative)</th>
<th>Decimal Form of Two’s Complement for Negative Integers</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>01111111</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>01111110</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>00000010</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>00000001</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>−1</td>
<td>11111111</td>
<td>$2^8 - 1$</td>
</tr>
<tr>
<td>−2</td>
<td>11111110</td>
<td>$2^8 - 2$</td>
</tr>
<tr>
<td>−3</td>
<td>11111101</td>
<td>$2^8 - 3$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>−127</td>
<td>10000001</td>
<td>$2^8 - 127$</td>
</tr>
<tr>
<td>−128</td>
<td>10000000</td>
<td>$2^8 - 128$</td>
</tr>
</tbody>
</table>

Table 2.5.2

Computer Addition with Negative Integers
Case 1, (both integers are nonnegative): This case is easy because if two nonnegative integers from 0 through 127 are written in their 8-bit representations and if their sum is also in the range 0 through 127, then the 8-bit representation of their sum has a leading 0 and is therefore interpreted correctly as a nonnegative integer.

The example below illustrates what happens when 38 and 69 are added.

```
 0|0|0|0|1|1|0 |
+ 0|0|0|0|1|0|1 |
 0|1|1|0|0|1|1 |
```

To be concrete, let the nonnegative integer be \(a \) and the negative integer be \(-b \) and suppose both \(a \) and \(-b \) are in the range \(-128 \) through 127. The crucial observation is that adding the 8-bit representations of \(a \) and \(-b \) is equivalent to computing

\[
a + (2^8 - b)
\]

because the 8-bit representation of \(-b \) is the binary representation of \(2^8 - b \).
Computer Addition with Negative Integers

Case 2 (a is nonnegative and \(-b\) is negative and \(|a| < |b|\)): In this case, observe that \(a = |a| < |b| = b\) and

\[a + (2^8 - b) = 2^8 - (b - a), \]

and the binary representation of this number is the 8-bit representation of \(-b - a = a + (-b)\). We must be careful to check that \(2^8 - (b - a)\) is between \(2^7\) and \(2^8\). But it is because

\[2^7 = 2^8 - 2^7 < 2^8 - (b - a) < 2^8 \quad \text{since} \quad 0 < b - a \leq 128 = 2^7. \]

Hence in case \(|a| < |b|\), adding the 8-bit representations of \(a\) and \(-b\) gives the 8-bit representation of \(a + (-b)\).

Example 8 – Computing \(a + (-b)\) Where \(0 \leq a < b \leq 128\)

Use 8-bit representations to compute \(39 + (-89)\).

Solution:

Step 1: Change from decimal to 8-bit representations using the two’s complement to represent \(-89\).

Since \(39_{10} = (32 + 4 + 2 + 1)_{10} = 100111_2\), the 8-bit representation of 39 is 00100111.

Now the 8-bit representation of \(-89\) is the two’s complement of 89.

Example 8 – Solution

This is obtained as follows:

\[
\begin{array}{c}
\begin{array}{cccc}
89_{10} &=& (64 + 16 + 8 + 1)_{10} &=& 01010011_{2} \quad \text{flip the bits} \\
&+& 10100111_{2} &=& \text{add 1} \\
\hline
&=& 10110011_{2}
\end{array}
\end{array}
\]

So the 8-bit representation of \(-89\) is 10100111.
Example 8 – Solution

Step 2: Add the 8-bit representations in binary notation and truncate the 1 in the 28th position if there is one:

\[
\begin{array}{c}
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
\quad + & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline
1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\]

There is no 1 in the 28th position to truncate.

Example 8 – Solution

Step 3: Find the decimal equivalent of the result. Since its leading bit is 1, this number is the 8-bit representation of a negative integer.

\[
\begin{align*}
11001110 & \text{ mpg bit} \quad 0010001 & \text{ add 1} \quad 00110010 \\
\leftrightarrow -32 + 16 + 2 & = -50_b
\end{align*}
\]

Note that since 39 \text{ -- } 89 = -50, this procedure gives the correct answer.

Computer Addition with Negative Integers

Case 3 (a is nonnegative and \(-b\) is negative and |b| = |a|): In this case, observe that \(b = |b| = |a| = a\) and

\[a + (2^b - b) = 2^8 + (a - b)\].

Also

\[2^8 \leq 2^8 + (a - b) < 2^9 + 2^7\]

because \(0 \leq a - b \leq 2\).

So the binary representation of \(a + (2^b - b) = 2^8 + (a - b)\) has a leading 1 in the ninth (28th) position, meaning it is often called “overflow” because it does not fit in the 8-bit integer format.
Computer Addition with Negative Integers

Now subtracting 2^8 from $2^8 + (a - b)$ is equivalent to truncating the leading 1 in the 2^{8th} position of the binary representation of the number. But

$$[a + (2^8 - b)] - 2^8 = 2^8 + (a - b) - 2^8 = a - b = a + (-b).$$

Hence in case $|a| \geq |b|$, adding the 8-bit representations of a and $-b$ and truncating the leading 1 (which is sure to be present) gives the 8-bit representation of $a + (-b)$.

Example 9 – Computing $a + (-b)$ Where $1 \leq b < a \leq 127$

Use 8-bit representations to compute $39 + (-25)$.

Solution:

Step 1: Change from decimal to 8-bit representations using the two’s complement to represent -25.

As in Example 8, the 8-bit representation of 39 is 00100111. Now the 8-bit representation of -25 is the two’s complement of 25, which is obtained as follows:

$$25_{10} = (16 + 8 + 1)_{10} = 00010001.$$ \[\text{flip bits}\] \[11001111\] \[add 1\] \[11001110\]

Step 2: Add the 8-bit representations in binary notation and truncate the 1 in the 2^{8th} position if there is one:

$$\begin{array}{c}
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
+ & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
\hline
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
\end{array}$$

So the 8-bit representation of -25 obtained as 11001110.
Example 9 – Solution

Step 3: Find the decimal equivalent of the result:

\[00001110_2 = (8 + 4 + 2)_{10} \]
\[= 14_{10}. \]

Since \(39 - 25 = 14 \), this is the correct answer.

Computer Addition with Negative Integers

Case 4 (both integers are negative): This case involves adding two negative integers in the range \(-1\) through \(-128\) whose sum is also in this range.

To be specific, consider the sum \((-a) + (-b)\) where \(a, b,\) and \(a + b\) are all in the range 1 through 128. In this case, the 8-bit representations of \(-a\) and \(-b\) are the 8-bit representations of \(2^8 - a\) and \(2^8 - b\).

So if the 8-bit representations of \(-a\) and \(-b\) are added, the result is

\[(2^8 - a) + (2^8 - b) = [2^8 - (a + b)] + 2^8. \]

Computer Addition with Negative Integers

We know that truncating a leading 1 in the ninth \((2^9)\) position of a binary number is equivalent to subtracting \(2^9\).

So when the leading 1 is truncated from the 8-bit representation of \((2^8 - a) + (2^8 - b)\), the result is

\[- (a + b), \text{ which is the 8-bit representation of} \]
\[(a + b) = (-a) + (-b). \]
Example 10 – Computing \((-a) + (-b)\) Where \(1 \leq a, b \leq 128\), and \(1 \leq a + b \leq 128\)

Use 8-bit representations to compute \((-89) + (-25)\).

Solution:

Step 1: Change from decimal to 8-bit representations using the two’s complements to represent \(-89\) and \(-25\).

The 8-bit representations of \(-89\) and \(-25\) were shown in Examples 2.5.8 and 2.5.9 to be 10100111 and 11100111, respectively.

Step 2: Add the 8-bit representations in binary notation and truncate the 1 in the 2\(^{nd}\) position if there is one:

\[
\begin{array}{c}
10100111 \\
+ \\
11100111 \\
\hline \\
11001000
\end{array}
\]

Truncate→

11001000

Step 3: Find the decimal equivalent of the result. Because its leading bit is 1, this number is the 8-bit representation of a negative integer.

\[
1001110 \text{ f } \text{ f } \text{ f } \text{ f } \\
0110001 \text{ add } 1 \text{ } \\
0110001 \text{ } \text{ } \text{ } \text{ } \\
\text{ } \text{ } \text{ } \text{ } \\
\text{ } \text{ } \text{ } \text{ } \\
\text{ } \text{ } \text{ } \text{ } \\
(-64 + 32 + 16 + 8)_{10} = -114_{10}
\]

Since \((-89) + (-25) = -114\), that is the correct answer.
Hexadecimal Notation

Hexadecimal notation is even more compact than decimal notation, and it is much easier to convert back and forth between hexadecimal and binary notation than it is between binary and decimal notation.

The word hexadecimal comes from the Greek root hex-, meaning "six," and the Latin root deci-, meaning "ten." Hence hexadecimal refers to "sixteen," and hexadecimal notation is also called base 16 notation.

Hexadecimal Notation

Hexadecimal notation is based on the fact that any integer can be uniquely expressed as a sum of numbers of the form

where each n is a nonnegative integer and each d is one of the integers from 0 to 15. In order to avoid ambiguity, each hexadecimal digit must be represented by a single symbol. The integers 10 through 15 are represented by the symbols A, B, C, D, E, and F.
Hexadecimal Notation

The sixteen hexadecimal digits are shown in Table 2.5.3, together with their decimal equivalents and, for future reference, their 4-bit binary equivalents.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hexadecimal</th>
<th>4-Bit Binary Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
</tbody>
</table>

Table 2.5.3

Example 11 – Converting from Hexadecimal to Decimal Notation

Convert $3CF_{16}$ to decimal notation.

Solution:
Consider the following schema.

So $3CF_{16} = 975_{10}$.

Hexadecimal Notation

Now consider how to convert from hexadecimal to binary notation.

The following sequence of steps will give the required conversion from hexadecimal to binary notation.

To convert an integer from hexadecimal to binary notation:
- Write each hexadecimal digit of the integer in 4-bit binary notation.
- Juxtapose the results.
Example 12 – Converting from Hexadecimal to Binary Notation

Convert B09F\textsubscript{16} to binary notation.

Solution:

\begin{align*}
 B\textsubscript{16} &= 11\textsubscript{10} = 1011\textsubscript{2} , \\
 0\textsubscript{16} &= 0\textsubscript{10} = 0000\textsubscript{2} , \\
 9\textsubscript{16} &= 9\textsubscript{10} = 1001\textsubscript{2} , \\
 F\textsubscript{16} &= 15\textsubscript{10} = 1111\textsubscript{2} .
\end{align*}

Example 12 – Solution

Consequently,

\begin{align*}
 & B & 0 & 9 & F \\
\downarrow & 1011 & 0000 & 1001 & 1111 \\
\end{align*}

and the answer is 1011000010011111\textsubscript{2}.

Hexadecimal Notation

To convert integers written in binary notation into hexadecimal notation, reverse the steps of the previous procedure.

To convert an integer from binary to hexadecimal:
- Group the digits of the binary number into sets of four, starting from the right and adding leading zeros as needed.
- Convert the binary numbers in each set of four into hexadecimal digits. Juxtapose those hexadecimal digits.
Example 13 – Converting from Binary to Hexadecimal Notation

Convert \(100110110101001_2\) to hexadecimal notation.

Solution:
First group the binary digits in sets of four, working from right to left and adding leading 0's if necessary.

\[
0100 \quad 1101 \quad 1010 \quad 1001.
\]

Example 13 – Solution

Convert each group of four binary digits into a hexadecimal digit.

\[
\begin{array}{cccc}
0100 & 1101 & 1010 & 1001 \\
4 & D & A & 9 \\
\end{array}
\]

Then juxtapose the hexadecimal digits.

\(4DA9_{16}\)