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Direct Proof and 
Counterexample I:Introduction

SECTION 4.1



Discovery and Proof

• Both discovery and proof are integral parts of problem solving.  
!

• When you think you have discovered that a certain statement 
is true, try to figure out why it is true. 
!
• If you succeed, you will know that your discovery is 

genuine.  
• Even if you fail, the process of trying will give you insight 

into the nature of the problem and may lead to the 
discovery that the statement is false. 

• For complex problems, the interplay between discovery and 
proof is not reserved to the end of the problem-solving 
process but, rather, is an important part of each step.



Direct Proof and Counterexample I: Introduction



Definitions
• In order to evaluate the truth or falsity of a statement, you 

must understand what the statement is about.  
• You must know the meanings of all terms that occur in 

the statement.  
• Mathematicians define terms very carefully and 

precisely and consider it important to learn definitions 
virtually word for word.



Example 1 – Even and Odd Integers

Use the definitions of even and odd to justify your answers 
to the following questions. 
a. Is 0 even? 
b. Is −301 odd? 
c. If a and b are integers, is 6a2b even? 
d. If a and b are integers, is 10a + 8b + 1 odd? 
e. Is every integer either even or odd?



Example 2 – Prime and Composite Numbers

a. Is 1 prime? 
b. Is every integer greater than 1 either prime or  composite? 
c. Write the first six prime numbers. 
d. Write the first six composite numbers. 
!



Proving Existential Statements



Proving Existential Statements
We have known that a statement in the form 
                         ∃x ∈ D such that Q(x) 
!
is true if, and only if, 
                   Q(x) is true for at least one x in D. 
!
One way to prove this is to find an x in D that makes Q(x) 
true. 
!
Another way is to give a set of directions for finding such an 
x. Both of these methods are called constructive proofs of 
existence.



Example 3 – Constructive Proofs of Existence

a. Prove the following: ∃ an even integer n that can be 
written in two ways as a sum of two prime numbers. 

!
b. Suppose that r and s are integers. Prove the following: ∃ 

an integer k such that 22r + 18s = 2k. 
!



Proving Existential Statements
A nonconstructive proof of existence involves showing 
either  
(a) that the existence of a value of x that makes Q(x) true is 
guaranteed by an axiom or a previously proved theorem or  
(b) that the assumption that there is no such x leads to a 
contradiction. 
!
The disadvantage of a nonconstructive proof is that it may 
give virtually no clue about where or how x may be found.



Disproving Universal Statements 
by Counterexample



Disproving Universal Statements by Counterexample

To disprove a statement means to show that it is false.  
!
To disprove a statement of the form 
                        ∀x in D, if P(x) then Q(x). 
Showing that this statement is false is equivalent to showing 
that its negation is true: 
                   ∃x in D such that P(x) and not Q(x). 
!
  To show the existential statement is true, we generally give 
an example, and because the example is used to show that 
the original statement is false, we call it a counterexample. 
Thus the method of disproof by counterexample.



Disproving Universal Statements by Counterexample



Example 4 – Disproof by Counterexample

Disprove the following statement by finding a 
counterexample: 
          ∀ real numbers a and b, if a2 = b2 then a = b. 
!
Solution: 
To disprove this statement, you need to find real numbers a 
and b such that the hypothesis a2 = b2 is true and the 
conclusion a = b is false.  
!
The fact that both positive and negative integers have 
positive squares helps in the search.



Example 4 – Solution
If you flip through some possibilities in your mind, you will 

quickly see that 1 and –1 will work (or 2 and –2, or 0.5 
and –0.5, and so forth).

cont’d



Proving Universal Statements



Proving Universal Statements
The vast majority of mathematical statements to be proved 
are universal. In discussing how to prove such statements, it 
is helpful to imagine them in a standard form: 

                          ∀x ∈ D, if P(x) then Q(x). 
!
When D is finite or when only a finite number of elements 
satisfy P(x), such a statement can be proved by the method 
of exhaustion.



Example: The Method of Exhaustion

Use the method of exhaustion to prove the following 
statement: 
 
    ∀n ∈ Z, if n is even and 4 ≤ n ≤ 26, then n can be written  
    as a sum of two prime numbers. 
!
Solution:



Proving Universal Statements
Most powerful technique for proving a universal statement is 
one that works regardless of the size of the domain over 
which the statement is quantified. 
!
It is called the method of generalizing from the generic 
particular.



Example 6 – Generalizing from the Generic Particular

At some time you may have been shown a “mathematical 
trick” like the following.  

!
You ask a person to pick any number, add 5, multiply by 4, 

subtract 6, divide by 2, and subtract twice the original 
number.  

!
Then you astound the person by announcing that their final 

result was 7. How does this “trick” work?



Let an empty box ● or the symbol x stand for the number 
the person picks.  
Here is what happens when the person follows your 
directions:

Example 6 – Generalizing from the Generic Particular
cont’d



Thus no matter what number the person starts with, the 
result will always be 7.  
!
Note that the x in the analysis above is particular (because it 
represents a single quantity), but it is also arbitrarily chosen 
or generic (because any number whatsoever can be put in 
its place).  
!
This illustrates the process of drawing a general conclusion 
from a particular but generic object.

cont’d
Example 6 – Generalizing from the Generic Particular



Proving Universal Statements
When the method of generalizing from the generic particular 
is applied to a property of the form “If P(x) then  
Q(x),” the result is the method of direct proof. 
!
• We have known that the only way an if-then statement can 

be false is for the hypothesis to be true and the conclusion 
to be false. 
!

• Thus, given the statement “If P(x) then Q(x),” if you can 
show that the truth of P(x) compels the truth of Q(x), then  
you will have proved the statement.



Proving Universal Statements
It follows by the method of generalizing from the generic 
particular that to show that “∀x, if P(x) then Q(x),” is true for 
all elements x in a set D, you suppose x is a particular but 
arbitrarily chosen element of D that makes P(x) true, and 
then you show that x makes Q(x) true.



Example 7 – A Direct Proof of a Theorem

Prove that the sum of any two even integers is even. 
!
Solution: 
In this case you might imagine some pairs of even integers, 
say 2 + 4, 6 + 10, 12 + 12, 28 + 54, and mentally check that 
their sums are even.



Example 7 – Solution
However, since you cannot possibly check all pairs of even 
numbers, you cannot know for sure that the statement is 
true in general by checking its truth in these particular 
instances. 
!
Many properties hold for a large number of examples and 
yet fail to be true in general. 
!
To prove this statement in general, you need to show that 
no matter what even integers are given, their sum is even. 
But given any two even integers, it is possible to represent 
them as 2r and 2s for some integers r and s.

cont’d



Example 7 – Solution
And by the distributive law of algebra, 2r + 2s = 2(r + s), 
which is even. Thus the statement is true in general. 
!
Suppose the statement to be proved were much more 
complicated than this. What is the method you could use to 
derive a proof? 
!
Formal Restatement: ∀ integers m and n, if m and n are  
                                      even then m + n is even. 
This statement is universally quantified over an infinite 
domain. Thus to prove it in general, you need to show that 
no matter what two integers you might be given, if both of 
them are even then their sum will also be even.

cont’d



Example 7 – Solution
Next ask yourself, “Where am I starting from?” or “What am 
I supposing?” The answer to such a question gives you the 
starting point, or first sentence, of the proof. 
!
Starting Point: Suppose m and n are particular but  
                          arbitrarily chosen integers that are even. 
!
Or, in abbreviated form: 
                    Suppose m and n are any even integers. 
!
Then ask yourself, “What conclusion do I need to show in 
order to complete the proof?”

cont’d



Example 7 – Solution
To Show: m + n is even. 
!
At this point you need to ask yourself, “How do I get from 
the starting point to the conclusion?” Since both involve the 
term even integer, you must use the definition of this term—
and thus you must know what it means for an integer to be 
even. 
!
It follows from the definition that since m and n are even, 
each equals twice some integer.

cont’d



Example 7 – Solution
One of the basic laws of logic, called existential 
instantiation, says, in effect, that if you know something 
exists, you can give it a name.  
!
However, you cannot use the same name to refer to two 
different things, both of which are currently under 
discussion.

cont’d



Example 7 – Solution
Thus since m equals twice some integer, you can give that 
integer a name, and since n equals twice some integer, you 
can also give that integer a name: 
!
!
Now what you want to show is that m + n is even.              In 
other words, you want to show that m + n equals              2 ● 
(some integer). Having just found alternative 
representations for m (as 2r) and n (as 2s), it seems 
reasonable to substitute these representations in place of m 
and n:

cont’d



Example 7 – Solution
Your goal is to show that m + n is even. By definition of 
even, this means that m + n can be written in the form 
!
!
This analysis narrows the gap between the starting point 
and what is to be shown to showing that 
!
!
Why is this true? First, because of the distributive law from 
algebra, which says that 
!
!
and, second, because the sum of any two integers is an 
integer, which implies that r + s is an integer.

cont’d



Example 7 – Solution
This discussion is summarized by rewriting the statement as 
a theorem and giving a formal proof of it. (In mathematics, 
the word theorem refers to a statement that is known to be 
true because it has been proved.)  
!
Such comments are purely a convenience for the reader 
and could be omitted entirely. For this reason they are 
italicized and enclosed in italic square brackets: [  ]. 
!
Donald Knuth, one of the pioneers of the science of 
computing, has compared constructing a computer program 
from a set of specifications to writing a mathematical proof 
based on a set of axioms.

cont’d



Example 7 – Solution
In keeping with this analogy, the bracketed comments can 
be thought of as similar to the explanatory documentation 
provided by a good programmer. Documentation is not 
necessary for a program to run, but it helps a human reader 
understand what is going on. 
!
!
!
!
Proof: 
Suppose m and n are [particular but arbitrarily chosen] even 
integers. [We must show that m + n is even.]

cont’d



Example 7 – Solution
By definition of even, m = 2r and n = 2s for some integers r 
and s. Then 
!
!
!
Let t = r + s. Note that t is an integer because it is a sum of 
integers. Hence 
!
                        
It follows by definition of even that m + n is even.  
[This is what we needed to show.]

cont’d



Directions for Writing Proofs of 
Universal Statements



Directions for Writing Proofs of Universal Statements

Think of a proof as a way to communicate a convincing 
argument for the truth of a mathematical statement. 
!
Over the years, the following rules of style have become 
fairly standard for writing the final versions of proofs: 
!
1. Copy the statement of the theorem to be proved on 
your paper. 
!
2. Clearly mark the beginning of your proof with the   
word Proof. 
!
3. Make your proof self-contained.



Directions for Writing Proofs of Universal Statements

    This means that you should explain the meaning of  each 
variable used in your proof in the body of the proof. Thus 
you will begin proofs by introducing the initial variables 
and stating what kind of objects they are. 

!
    At a later point in your proof, you may introduce a new 

variable to represent a quantity that is known at that point 
to exist. 

!
4. Write your proof in complete, gramatically correct  

    sentences. 
    This does not mean that you should avoid using symbols 

and shorthand abbreviations, just that you should 
incorporate them into sentences.



Directions for Writing Proofs of Universal Statements

5. Keep your reader informed about the status of each 
statement in your proof. 

     Your reader should never be in doubt about whether 
something in your proof has been assumed or 
established or is still to be deduced. If something is 
assumed, preface it with a word like Suppose or Assume. 

!
    If it is still to be shown, preface it with words like, We  

must show that or In other words, we must show that.  
This is especially important if you introduce a variable   in 
rephrasing what you need to show.



Directions for Writing Proofs of Universal Statements

6. Give a reason for each assertion in your proof. 
    Each assertion in a proof should come directly from the  
    hypothesis of the theorem, or follow from the definition of  
    one of the terms in the theorem, or be a result obtained  
    earlier in the proof, or be a mathematical result that has  
    previously been established or is agreed to be assumed. 
!
    Indicate the reason for each step of your proof using  
    phrases such as by hypothesis, by definition of . . . , and   
    by theorem . . . . 



Directions for Writing Proofs of Universal Statements

7. Include the “little words and phrases” that make the 
logic of your arguments clear. 

    When writing a mathematical argument, especially a 
proof, indicate how each sentence is related to the 
previous one. 

!
    Does it follow from the previous sentence or from a  

combination of the previous sentence and earlier ones? If 
so, start the sentence by stating the reason why it follows 
or by writing Then, or Thus, or So, or Hence, or  
Therefore, or Consequently, or It follows that, and include 
the reason at the end of the sentence.



Directions for Writing Proofs of Universal Statements

   If a sentence expresses a new thought or fact that does  
   not follow as an immediate consequence of the preceding    
   statement but is needed for a later part of a proof,  
   introduce it by writing Observe that, or Note that, or But,  
   or Now. 
   Sometimes in a proof it is desirable to define a new  
   variable in terms of previous variables. In such a case,  
   introduce the new variable with the word Let. 
!
8. Display equations and inequalities. 
    The convention is to display equations and inequalities  
    on separate lines to increase readability, both for other  
    people and for ourselves so that we can more easily  
    check our work for accuracy.



Variations among Proofs
It is rare that two proofs of a given statement, written by two 
different people, are identical. Even when the basic 
mathematical steps are the same, the two people may use 
different notation or may give differing amounts of 
explanation for their steps, or may choose different words to 
link the steps together into paragraph form. 
!
An important question is how detailed to make the 
explanations for the steps of a proof. This must ultimately be 
worked out between the writer of a proof and the intended 
reader, whether they be student and teacher, teacher and 
student, student and fellow student, or mathematician and 
colleague.



Common Mistakes



Common Mistakes
The following are some of the most common mistakes 
people make when writing mathematical proofs. 
!
1. Arguing from examples. 
    Looking at examples is one of the most helpful practices  
    a problem solver can engage in and is encouraged by all  
    good mathematics teachers.  
!
    However, it is a mistake to  think that a general  
    statement can be proved by showing it to be true for  
    some special cases. A property referred to in a universal  
    statement may be true in many instances without being  
    true in general.



Common Mistakes
2. Using the same letter to mean two different things. 
    Some beginning theorem provers give a new variable 
quantity the same letter name as a previously introduced 
variable. 
!
3. Jumping to a conclusion. 
    To jump to a conclusion means to allege the truth of 
something without giving an adequate reason. 
!
4. Circular reasoning. 
    To engage in circular reasoning means to assume what is 
to be proved; it is a variation of jumping to a conclusion.



Common Mistakes
5. Confusion between what is known and what is still to    
    be shown. 
    A more subtle way to engage in circular reasoning  
    occurs when the conclusion to be shown is restated  
    using a variable. 
!
6. Use of any rather than some. 
    There are a few situations in which the words any and  
    some can be used interchangeably.



Common Mistakes
7. Misuse of the word if. 
    Another common error is not serious in itself, but it 
reflects imprecise thinking that sometimes leads to 
problems later in a proof. This error involves using the word 
if when the word because is really meant.



Getting Proofs Started



Getting Proofs Started
Believe it or not, once you understand the idea of 
generalizing from the generic particular and the method of 
direct proof, you can write the beginnings of proofs even for 
theorems you do not understand.  
!
The reason is that the starting point and what is to be shown 
in a proof depend only on the linguistic form of the 
statement to be proved, not on the content of the statement.



Example 8 – Identifying the “Starting Point” and the “Conclusion to Be Shown”

Write the first sentence of a proof (the “starting point”) and 
the last sentence of a proof (the “conclusion to be shown”) 
for the following statement: 
           Every complete, bipartite graph is connected. 
!
Solution: 
It is helpful to rewrite the statement formally using a 
quantifier and a variable: 
!
Formal Restatement:



Example 8 – Solution
The first sentence, or starting point, of a proof supposes the 
existence of an object (in this case G) in the domain (in this 
case the set of all graphs) that satisfies the hypothesis of 
the if-then part of the statement (in this case that G is 
complete and bipartite).  
!
The conclusion to be shown is just the conclusion of the    if-
then part of the statement (in this case that G is connected).

cont’d



Example 8 – Solution
Starting Point: Suppose G is a [particular but arbitrarily  
                          chosen] graph such that G is complete and  
                          bipartite. 
!
Conclusion to Be Shown: G is connected. 
!
Thus the proof has the following shape: 
Proof: 
Suppose G is a [particular but arbitrarily chosen] graph such 
that G is complete and bipartite. 
   
Therefore, G is connected.

cont’d

…



Showing That an Existential 
Statement Is False



Disprove an Existential Statement

We have known that the negation of an existential 
statement is universal.  
!
It follows that to disprove an existential statement, you must 
prove its negation, a universal statement, is true.



Example 9 – Disproving an Existential Statement

Show that the following statement is false: 
  There is a positive integer n such that n2 + 3n + 2 is prime. 
!
Solution: 
Proving that the given statement is false is equivalent to 
proving its negation is true.  
!
The negation is 
!
      For all positive integers n, n2 + 3n + 2 is not prime. 
!
Because the negation is universal, it is proved by 
generalizing from the generic particular.



Example 9 – Solution
Claim: The statement “There is a positive integer n such  
            that n2 + 3n + 2 is prime” is false. 
!
Proof: 
Suppose n is any [particular but arbitrarily chosen] positive 
integer. [We will show that n2 + 3n + 2 is not prime.] 
!
We can factor n2 + 3n + 2 to obtain  
                         n2 + 3n + 2 = (n + 1)(n + 2). 
!
We also note that n + 1 and n + 2 are integers (because 
they are sums of integers) and that both n + 1 > 1 and  
n + 2 > 1 (because n ≥ 1).Thus n2 + 3n + 2 is a product of 
two integers each greater than 1, and so n2 + 3n + 2 is not 
prime.

cont’d



Conjecture, Proof, and Disproof



Conjecture, Proof, and Disproof
More than 350 years ago, the French mathematician Pierre 
de Fermat claimed that it is impossible to find positive 
integers x, y, and z with xn + yn = zn if n is an integer that is 
at least 3. (For n = 2, the equation has many integer 
solutions, such as 32 + 42 = 52 and 52 + 122 = 132.) 
!



Conjecture, Proof, and Disproof
No proof, however, was found among his papers, and over 

the years some of the greatest mathematical minds tried 
and failed to discover a proof or a counterexample, for 
what came to be known as Fermat’s last theorem. 

!
One of the oldest problems in mathematics that remains 

unsolved is the Goldbach conjecture. In Example 5 it was 
shown that every even integer from 4 to 26 can be 
represented as a sum of two prime numbers. 

!
More than 250 years ago, Christian Goldbach (1690–1764) 

conjectured that every even integer greater than 2 can be 
so represented.



Conjecture, Proof, and Disproof
Explicit computer-aided calculations have shown the 
conjecture to be true up to at least 1018. But there is a huge 
chasm between 1018 and infinity. 
!
As pointed out by James Gleick of the New York Times, 
many other plausible conjectures in number theory have 
proved false.  
!
Leonhard Euler (1707–1783), for example, proposed in the 
eighteenth century that a4 + b4 + c4 = d4 had no nontrivial 
whole number solutions.



Conjecture, Proof, and Disproof
In other words, no three perfect fourth powers add up to 
another perfect fourth power. For small numbers, Euler’s 
conjecture looked good. 
!
But in 1987 a Harvard mathematician, Noam Elkies, proved 
it wrong. One counterexample, found by Roger Frye of 
Thinking Machines Corporation in a long computer search, 
is 95,8004 + 217,5194 + 414,5604 = 422,4814.
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Direct Proof and Counterexample II: 
Rational Numbers

SECTION 4.2



Direct Proof and Counterexample II: Rational Numbers

Sums, differences, and products of integers are integers. 
But most quotients of integers are not integers. Quotients of 
integers are, however, important; they are known as rational 
numbers. 
!
!
!
!
!
!



Example 1 – Determining Whether Numbers Are Rational or Irrational

a. Is 10/3 a rational number? 
!
b. Is        a rational number?  

c. Is 0.281 a rational number? 

d. Is 7 a rational number? 

e. Is 0 a rational number?



Example 1 – Determining Whether Numbers Are Rational or Irrational

f. Is 2/0 a rational number? 

g. Is 2/0 an irrational number? 

h. Is 0.12121212 . . . a rational number (where the digits 12 
    are assumed to repeat forever)? 

i.  If m and n are integers and neither m nor n is zero, is    
    (m + n) /m n a rational number?

cont’d



Example 1 – Solution
h. Yes. Let                              Then                                 
    Thus 
!
    But also     
!
    Hence      
!
    And so 
!
    Therefore, 0.12121212…. = 12/99, which is a ratio of  
    two nonzero integers and thus is a rational number.

cont’d



Example 1 – Solution
    Note that you can use an argument similar to this one to 
    show that any repeating decimal is a rational number.  
!
i. Yes, since m and n are integers, so are m + n and m n  
   (because sums and products of integers are integers). 
   Also m n ≠ 0 by the zero product property.  
       
   One version of this property says the following:

cont’d



More on Generalizing from the 
Generic Particular



More on Generalizing from the Generic Particular

Some people like to think of the method of generalizing from 
the generic particular as a challenge process. 
!
If you claim a property holds for all elements in a domain, 
then someone can challenge your claim by picking any 
element in the domain whatsoever and asking you to prove 
that that element satisfies the property. 
!
To prove your claim, you must be able to meet all such 
challenges. That is, you must have a way to convince the 
challenger that the property is true for an arbitrarily chosen 
element in the domain.



More on Generalizing from the Generic Particular

For example, suppose “A” claims that every integer is a 
rational number. “B” challenges this claim by asking “A” to 
prove it for n = 7.  
!
“A” observes that 
!
!
!
“B” accepts this explanation but challenges again with        n 
= –12. “A” responds that



More on Generalizing from the Generic Particular

Next “B” tries to trip up “A” by challenging with n = 0, but “A” 
answers that 
!
!
As you can see, “A” is able to respond effectively to all “B”s 
challenges because “A” has a general procedure for putting 
integers into the form of rational numbers: “A” just divides 
whatever integer “B” gives by 1. 
!
That is, no matter what integer n “B” gives “A”, “A” writes



More on Generalizing from the Generic Particular

This discussion proves the following theorem.



Proving Properties of Rational 
Numbers



Prove that the sum of any two rational numbers is rational. 
!
Solution: 
Begin by mentally or explicitly rewriting the statement to be 
proved in the form “∀______, if ______ then ______.” 
!
Formal Restatement: ∀ real numbers r and s, if r and s 
                                     are rational then r + s is rational.  
!
Next ask yourself, “Where am I starting from?” or “What am 
I supposing?” The answer gives you the starting point, or 
first sentence, of the proof.

Example 2 – A Sum of Rationals Is Rational



Example 2 – Solution
Starting Point: Suppose r and s are particular but arbitrarily 
                          chosen real numbers such that r and s are  
                          rational; or, more simply, Suppose r and s 
                          are rational numbers.  
!
Then ask yourself, “What must I show to complete the 
proof?” 
!
To Show: r + s is rational. 
 
Finally ask, “How do I get from the starting point to the 
conclusion?” or “Why must r + s be rational if both r and s are 
rational?” The answer depends in an essential way on the 
definition of rational.

cont’d



Example 2 – Solution
Rational numbers are quotients of integers, so to say that   r 
and s are rational means that 
!
!
!
!
It follows by substitution that

cont’d



Example 2 – Solution
You need to show that r + s is rational, which means that    r 
+ s can be written as a single fraction or ratio of two integers 
with a nonzero denominator.  
!
But the right-hand side of equation (4.2.1) in

cont’d



Example 2 – Solution
Is this fraction a ratio of integers? Yes. Because products 
and sums of integers are integers, ad + bc and bd are both 
integers.  
!
Is the denominator bd ≠ 0? Yes, by the zero product 
property (since b ≠ 0 and d ≠ 0). Thus r + s is a rational 
number. 
!
This discussion is summarized as follows:

cont’d



Example 2 – Solution
Proof:  
Suppose r and s are rational numbers. [We must show that r 
+ s is rational.]  
!
Then, by definition of rational, r = a/b and s = c/d for some 
integers a, b, c, and d with b ≠ 0 and d ≠ 0.  
!
Thus

cont’d



Example 2 – Solution
Let p = ad + bc and q = bd. Then p and q are integers 
because products and sums of integers are integers and 
because a, b, c, and d are all integers.  
!
Also q ≠ 0 by the zero product property. 
!
Thus 
!
!
!
Therefore, r + s is rational by definition of a rational number. 
[This is what was to be shown.]

cont’d



Deriving New Mathematics from Old



In the future, when we ask you to prove something 
directly from the definitions, we will mean that you should 
restrict yourself to this approach. 
!
However, once a collection of statements has been proved 
directly from the definitions, another method of proof 
becomes possible.  
!
The statements in the collection can be used to derive 
additional results.

Deriving New Mathematics from Old



Example 3 – Deriving Additional Results about Even and Odd Integers

Suppose that you have already proved: 
1. The sum, product, and difference of any two even integers 
    are even. 
2. The sum and difference of any two odd integers are even. 
3. The product of any two odd integers is odd. 
4. The product of any even integer and any odd integer is 
    even. 
5. The sum of any odd integer and any even integer is odd. 
6. The difference of any odd integer minus any even 
    integer is odd. 
7. The difference of any even integer minus any odd 
    integer is odd.

Use the properties listed above to prove that if a is any  
even integer and b is any odd integer, then               is an 
integer.



Example 3 – Solution
Suppose a is any even integer and b is any odd integer. By 
property 3, b2 is odd, and by property 1, a2 is even.  
!
Then by property 5, a2 + b2 is odd, and because 1 is also odd, 
the sum                                          is even by property 2. 
!
Hence, by definition of even, there exists an integer k such 
that                             

Dividing both sides by 2 gives              = k, which is an 
integer.  
!
Thus               is an integer [as was to be shown].



A corollary is a statement whose truth can be immediately 
deduced from a theorem that has already been proved.

Deriving New Mathematics from Old



Example 4 – The Double of a Rational Number

Derive the following as a corollary of Theorem 4.2.2. 
!
!
!
!
Solution: 
The double of a number is just its sum with itself.  
!
But since the sum of any two rational numbers is rational 
(Theorem 4.2.2), the sum of a rational number with itself is 
rational.  
!
Hence the double of a rational number is rational. 



Example 4 – Solution
Here is a formal version of this argument:  
!
Proof: 
Suppose r is any rational number. Then 2r = r + r is a sum of 
two rational numbers.  
!
So, by Theorem 4.2.2, 2r is rational.

cont’d
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Direct Proof and 
Counterexample III: Divisibility

SECTION 4.3



Direct Proof and Counterexample III: Divisibility

The notion of divisibility is the central concept of one of the 
most beautiful subjects in advanced mathematics: number 
theory, the study of properties of integers.



Example 1 – Divisibility
a. Is 21 divisible by 3?  
!
b. Does 5 divide 40?  
!
c. Does 7 | 42? 

!
d. Is 32 a multiple of −16?  
!
e. Is 6 a factor of 54?  
!
f. Is 7 a factor of −7?



Direct Proof and Counterexample III: Divisibility

Two useful properties of divisibility are 
!
!
!
!
!
!
!
!
One of the most useful properties of divisibility is that it is 
transitive. If one number divides a second and the second 
number divides a third, then the first number divides the third.



Example 1 – Divisibility of Algebraic Expressions

a. If a and b are integers, is 3a + 3b divisible by 3? 
!
b. If k and m are integers, is 10km divisible by 5? 
!
Solution: 
a. Yes. By the distributive law of algebra, 3a + 3b = 3(a + b)  
    and a + b is an integer because it is a sum of two 
    integers. 
!
b. Yes. By the associative law of algebra, 10km = 5 ● (2km)  
    and 2km is an integer because it is a product of three 
    integers.



Direct Proof and Counterexample III: Divisibility

When the definition of divides is rewritten formally using the 
existential quantifier, the result is 
!

!
!

Since the negation of an existential statement is universal, it 
follows that d does not divide n (denoted        ) if, and only if, 
∀ integers k, n ≠ dk, or, in other words, the quotient n/d is 
not an integer.



Example 4 – Checking Nondivisibility

Does 4 | 15? 
!
Solution: 
No,               , which is not an integer.



Proving Properties of Divisibility



Example 6 – Transitivity of Divisibility

Prove that for all integers a, b, and c, if a | b and b | c, then 
a | c. 
!
Solution: 
Since the statement to be proved is already written formally, 
you can immediately pick out the starting point, or first 
sentence of the proof, and the conclusion that must be 
shown. 
!
Starting Point: Suppose a, b, and c are particular but 
                          arbitrarily chosen integers such that a | b  
                          and b | c.



Example 6 – Solution
To Show: a | c. 
!
You need to show that a | c, or, in other words, that 
!
!
But since a | b, 
!
!
And since b | c, 
!
!
Equation 4.3.2 expresses c in terms of b, and equation 4.3.1 
expresses b in terms of a.

cont’d



Example 6 – Solution
Thus if you substitute 4.3.1 into 4.3.2, you will have an 
equation that expresses c in terms of a. 
!
!
!
!
But (ar)s = a(rs) by the associative law for multiplication. 
Hence 
!
!
Now you are almost finished.

cont’d



Example 6 – Solution
You have expressed c as a ● (something). It remains only to 
verify that that something is an integer. But of course it is, 
because it is a product of two integers. 

cont’d



Example 6 – Solution
Proof:  
Suppose a, b, and c are [particular but arbitrarily chosen] 
integers such that a divides b and b divides c. [We must 
show that a divides c.] By definition of divisibility, 
!
    
!
By substitution

cont’d



Example 6 – Solution
Let k = rs. Then k is an integer since it is a product of 
integers, and therefore 
!

!
!

Thus a divides c by definition of divisibility. [This is what was 
to be shown.]

cont’d



Proving Properties of Divisibility



Counterexamples and Divisibility



Example 7 – Checking a Proposed Divisibility Property

Is the following statement true or false? For all integers a 
and b, if a | b and b | a then a = b. 
!
Solution: 
This statement is false. Can you think of a counterexample 
just by concentrating for a minute or so? 
!
The following discussion describes a mental process that 
may take just a few seconds. It is helpful to be able to use it 
consciously, however, to solve more difficult problems.



Example 7 – Solution
To discover the truth or falsity of the given statement, start 
off much as you would if you were trying to prove it. 
!
Starting Point: Suppose a and b are integers such that  
                          a | b and b | a. 
!
Ask yourself, “Must it follow that a = b, or could it happen 
that a ≠ b for some a and b?” Focus on the supposition. 
What does it mean? By definition of divisibility, the 
conditions a | b and b | a mean that

cont’d



Example 7 – Solution
Must it follow that a = b, or can you find integers a and b that 
satisfy these equations for which a ≠ b? The equations imply 
that 
!

!
!
Since b | a, b ≠ 0, and so you can cancel b from the extreme 
left and right sides to obtain 
!

!
!
In other words, k and l are divisors of 1. But, by Theorem 
4.3.2, the only divisors of 1 are 1 and –1. Thus k and l are 
both 1 or are both –1. If k = l = 1, then b = a.

cont’d



Example 7 – Solution
But if k = l = –1, then b = –a and so a ≠ b. 
!
This analysis suggests that you can find a counterexample 
by taking b = –a.  
!
Here is a formal answer:

cont’d



The Unique Factorization  
of Integers Theorem



The Unique Factorization of Integers Theorem

The most comprehensive statement about divisibility of 
integers is contained in the unique factorization of integers 
theorem.  
!
Because of its importance, this theorem is also called the 
fundamental theorem of arithmetic. 
!
The unique factorization of integers theorem says that any 
integer greater than 1 either is prime or can be written as a 
product of prime numbers in a way that is unique except, 
perhaps, for the order in which the primes are written.



The Unique Factorization of Integers Theorem



Unique Factorization of Integers Theorem

Because of the unique factorization theorem, any integer   n 
> 1 can be put into a standard factored form in which the 
prime factors are written in ascending order from left to 
right.



Example 9 – Using Unique Factorization to Solve a Problem

Suppose m is an integer such that  
!
!

Does 17 | m? 
!
Solution: 
Since 17 is one of the prime factors of the right-hand side of 
the equation, it is also a prime factor of the left-hand side 
(by the unique factorization of integers theorem). 
!
But 17 does not equal any prime factor of 8, 7, 6, 5, 4, 3, or 
2 (because it is too large). Hence 17 must occur as one of 
the prime factors of m, and so 17 | m.
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Direct Proof and Counterexample IV: 
Division into Cases and the  

Quotient-Remainder Theorem

SECTION 4.4



The quotient-remainder theorem says that when any integer 
n is divided by any positive integer d, the result is a quotient 
q and a nonnegative remainder r that is smaller than d.

Direct Proof and Counterexample IV: Division into 
Cases and the Quotient-Remainder Theorem



Example 1 – The Quotient-Remainder Theorem

For each of the following values of n and d, find integers q 
and r such that                  and  
!
a. n = 54, d = 4 b. n = –54, d = 4 c. n = 54, d = 70 
!
Solution: 
a. 
!
b. 
!
c.   



div and mod



div and mod
A number of computer languages have built-in functions that 
enable you to compute many values of q and r for the 
quotient-remainder theorem.  
!
These functions are called div and mod in Pascal, are 
called / and % in C and C++, are called / and % in Java, and 
are called / (or \) and mod in .NET.  
!
The functions give the values that satisfy the 
quotient-remainder theorem when a nonnegative integer n 
is divided by a positive integer d and the result is assigned 
to an integer variable.



div and mod
However, they do not give the values that satisfy the 
quotient-remainder theorem when a negative integer n is 
divided by a positive integer d.



div and mod
For instance, to compute n div d for a nonnegative integer n 
and a positive integer d, you just divide n by d and ignore 
the part of the answer to the right of the decimal point. 
!
To find n mod d, you can use the fact that if 
then                     Thus  
and so   
!
!
Hence, to find n mod d compute n div d, multiply by d, and 
subtract the result from n.



Compute 32 div 9 and 32 mod 9 by hand and with a 
calculator. 
!
Solution: 
Performing the division by hand gives the following results: 
!
!
!
!
!
If you use a four-function calculator to divide 32 by 9, you 
obtain an expression like 3.555555556.

Example 2 – Computing div and mod



Example 2 – Solution
Discarding the fractional part gives 32 div 9 = 3, and so 
!
!
!
A calculator with a built-in integer-part function iPart allows 
you to input a single expression for each computation:

cont’d



Representations of Integers



Representations of Integers
We have defined, an even integer to have the form twice 

some integer. At that time we could have defined an odd 
integer to be one that was not even.  

!
Instead, because it was more useful for proving theorems, 

we specified that an odd integer has the form twice some 
integer plus one.  

!
The quotient-remainder theorem brings these two ways of 

describing odd integers together by guaranteeing that any 
integer is either even or odd.



Representations of Integers
To see why, let n be any integer, and consider what 
happens when n is divided by 2. 
!
By the quotient-remainder theorem (with d = 2), there exist 
unique integers q and r such that 
!
!
But the only integers that satisfy                 are r = 0 and  
r = 1. 
!
It follows that given any integer n, there exists an integer q 
with



Representations of Integers
In the case that                             n is even. In the case that 
                   n is odd. Hence n is either even or odd, and, 
because of the uniqueness of q and r, n cannot be both 
even and odd. 
!
The parity of an integer refers to whether the integer is even 
or odd. For instance, 5 has odd parity and 28 has even 
parity.  
!
We call the fact that any integer is either even or odd the 
parity property.



Example 5 – Consecutive Integers Have Opposite Parity

Prove that given any two consecutive integers, one is even 
and the other is odd. 
!
Solution: 
Two integers are called consecutive if, and only if, one is 
one more than the other. So if one integer is m, the next 
consecutive integer is m + 1. 
!
To prove the given statement, start by supposing that you 
have two particular but arbitrarily chosen consecutive 
integers. If the smaller is m, then the larger will be m + 1. 
  



Example 5 – Solution
How do you know for sure that one of these is even and the 
other is odd? You might imagine some examples: 4, 5; 12, 
13; 1,073, 1,074.  
!
In the first two examples, the smaller of the two integers is 
even and the larger is odd; in the last example, it is the 
reverse. These observations suggest dividing the analysis 
into two cases. 
!
Case 1: The smaller of the two integers is even. 
!
Case 2: The smaller of the two integers is odd.

cont’d



Example 5 – Solution
In the first case, when m is even, it appears that the next 
consecutive integer is odd. Is this always true?  
!
If an integer m is even, must m + 1 necessarily be odd?  
Of course the answer is yes. Because if m is even, then  
m = 2k for some integer k, and so m + 1 = 2k + 1, which is 
odd. 
!
In the second case, when m is odd, it appears that the next 
consecutive integer is even. Is this always true? If an integer 
m is odd, must m + 1 necessarily be even?

cont’d



Example 5 – Solution
Again, the answer is yes. For if m is odd, then  
for some integer k, and so  
!
    
which is even.

cont’d



Example 5 – Solution
This discussion is summarized as follows. 
!
!
!
!
Proof:  
Suppose that two [particular but arbitrarily chosen] 
consecutive integers are given; call them m and m + 1.  
[We must show that one of m and m + 1 is even and that the 
other is odd.] 

cont’d



Example 5 – Solution
By the parity property, either m is even or m is odd. [We 
break the proof into two cases depending on whether m is 
even or odd.] 
!
Case 1 (m is even): In this case, m = 2k for some integer k, 
and so m + 1 = 2k + 1, which is odd [by definition of odd]. 

Hence in this case, one of m and m + 1 is even and the 
other is odd.

cont’d



Example 5 – Solution
Case 2 (m is odd): In this case, m = 2k + 1 for some 
integer k, and so                                                                 . 
!
But k + 1 is an integer because it is a sum of two integers. 
Therefore, m + 1 equals twice some integer, and thus  
m + 1 is even. 
!
Hence in this case also, one of m and m + 1 is even and the 
other is odd.

cont’d



Example 5 – Solution
It follows that regardless of which case actually occurs for 
the particular m and m + 1 that are chosen, one of m and  
m + 1 is even and the other is odd. [This is what was to be 
shown.]

cont’d



Representations of Integers
There are times when division into more than two cases is 
called for. Suppose that at some stage of developing a 
proof, you know that a statement of the form 
!
!
is true, and suppose you want to deduce a conclusion C. 

By definition of or, you know that at least one of the 
statements Ai is true (although you may not know which). 
!
In this situation, you should use the method of division into 
cases.



Representations of Integers
First assume A1 is true and deduce C; next assume A2 is 
true and deduce C; and so forth until you have assumed An 
is true and deduced C.  
!
At that point, you can conclude that regardless of which 
statement Ai happens to be true, the truth of C follows.



Example 6 – Representations of Integers Modulo 4

Show that any integer can be written in one of the four 
forms 
!
!
for some integer q. 
!
Solution: 
Given any integer n, apply the quotient-remainder theorem 
to n with d = 4.  
!
This implies that there exist an integer quotient q and a 
remainder r such that



Example 6 – Solution
But the only nonnegative remainders r that are less than 4 
are 0, 1, 2, and 3. 
!
Hence 
!
!
for some integer q.

cont’d



Prove: The square of any odd integer has the form 8m + 1 for 
some integer m. 
!
Solution: 
Begin by asking yourself, “Where am I starting from?” and 
“What do I need to show?” To help answer these questions, 
introduce variables to represent the quantities in the 
statement to be proved. 
!
Formal Restatement: ∀ odd integers n, ∃ an integer m   
                                     such that                       
!
From this, you can immediately identify the starting point and 
what is to be shown.

Example 7 – The Square of an Odd Integer



Example 7 – Solution
Starting Point: Suppose n is a particular but arbitrarily  
                          chosen odd integer. 
!
To Show: ∃ an integer m such that  

This looks tough. Why should there be an integer m with the 
property that                    ? 
!
That would say that (n2 – 1)/8 is an integer, or that 8 divides 
n2 – 1.

cont’d



Example 7 – Solution
That means that their product is divisible by 4. But that’s not 
enough. You need to show that the product is divisible by 8. 
This seems to be a blind alley. 
!
You could try another tack. Since n is odd, you could 
represent n as 2q + 1 for some integer q. 
!
Then

cont’d



Example 7 – Solution
It is clear from this analysis that n2 can be written in the form 
4m + 1, but it may not be clear that it can be written as 8m + 
1. This also seems to be a blind alley. 
!
You could try breaking into cases based on these two 
different forms. 
!
It turns out that this last possibility works! In each of the two 
cases, the conclusion follows readily by direct calculation.

cont’d



Example 7 – Solution
The details are shown in the following formal proof: 
!
!
!
Proof:  
Suppose n is a [particular but arbitrarily chosen] odd  
integer. By the quotient-remainder theorem, n can be  
written in one of the forms 
!
!
for some integer q.  
 
In fact, since n is odd and 4q and 4q + 2 are even, n must 
have one of the forms

cont’d



Example 7 – Solution
Case 1 (n = 4q + 1 for some integer q): [We must find an 
integer m such that                     ]

cont’d



Example 7 – Solution
Let                      Then m is an integer since 2 and q are 
integers and sums and products of integers are integers. 
!
Thus, substituting, 
!
                 where m is an integer.

cont’d



Example 7 – Solution
Case 2 (n = 4q + 3 for some integer q): [We must find an 
integer m such that                     ] 
!
!
 

cont’d



Example 7 – Solution
[The motivation for the choice of algebra steps was the 
desire to write the expression in the form  
8 ● (some integer) + 1.] 
!
Let                              Then m is an integer since 1, 2, 3, 
and q are integers and sums and products of integers are 
integers.  
!
Thus, substituting, 
           where m is an integer.

cont’d



Example 7 – Solution
Cases 1 and 2 show that given any odd integer, whether of 
the form                                                  for some integer m. 
[This is what we needed to show.]

cont’d



Representations of Integers
Note that the result of Theorem 4.4.3 can also be written, 
“For any odd integer n, n2 mod 8 = 1.” 
!
In general, according to the quotient-remainder theorem, if 
an integer n is divided by an integer d, the possible 
remainders are 0, 1, 2, . . ., (d – 1). 
!
This implies that n can be written in one of the forms 
                                                            for some integer q.



Representations of Integers
Many properties of integers can be obtained by giving d a 
variety of different values and analyzing the cases that 
result.



Absolute Value and the Triangle 
Inequality



The triangle inequality is one of the most important results 
involving absolute value. It has applications in many 
areas of mathematics.

Absolute Value and the Triangle Inequality



A lemma is a statement that does not have much intrinsic 
interest but is helpful in deriving other results.

Absolute Value and the Triangle Inequality



Lemmas 4.4.4 and 4.4.5 now provide a basis for proving the 
triangle inequality.

Absolute Value and the Triangle Inequality


